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COMMERT TO USERS

In the upper right-hand cormer of each Mastery Test you will find the “pass"
and ”recycle” terms and a row of nucbers ™! 2 3 ...” go facilitate the
grading of the tests. We intend that you indicate the weakness of a student
who is asked to recycle on the test by putting a circle around the nucber of
the learning objective that the student did not satisfy. This procedure will
enable you easily to identify the learning objectives that are causing your
students difficulty.

COMMENT TO USERS

It is conventional practice to provide several review modules per semester or
quarter, as confidence builders, learning opportunities, and to ¢onsolidate what
has been learned. You the fnstructor should write these modules yourself, in terms
of the particular weaknesses and needs of your students. Thus, we have not supplied
review modules as such with the CBP Modules. However, fifteen sample review tests
vere writien during the Workshop and are available for your use as guides. Please
send $1.00 to CBP Modules, Behlen Lab of Physics, University of Nebraska - Lincoln,

Nebraska 68588.

FINIS

This printing has completed the initial CBP project. We hope that you z2re finding
the materials helpful fn your teaching. Revision of the modules is being planned
for the Summer of 1976. We therefore solicit your comments, suggestions, and/or
corrections for the revised edition. Please write or call

CBP WORKSHOP

Behlen Laboratory of Physics
University of Nebraska
Lincoln, HE 68588

Phone (402) 472-2790
(402) 472-2742




¥odule 1
STUDY GUIDE

SECOND LAW AND ENTROPY

INTRODUCTION

Suppose ycu get into your car and drive to > During this trip,

(1} the burning of the gasoline in the engine cylinders converts chemical energy
into thermal energy of the gases - that is, they become very hot; (2} the expan-
sion of these hot gases turns the crankshaft, performing work; and (3) this work,
transmitted to the wheels, gives the car kinetic energy - which must be continu-
ally replenished, because of depletion by friction and air resistance. At the
end of this trip, gallons of gasoline have been converted into water
vapor, carbon dioxide, and sundry less desirable vapors, scattered across

miles of countryside. In addition, the road, the air along it, and your engine
have been heated up. Ho energy has been lost, but energy has merely been con-
verted to different forms. So why not somehow collect all that energy again, and
use it to drive another engine (presumably of a different kind)? fthat would not
violate the first law of thermodynamics - but try to do it}

Well, then, perhaps we should concentrate just on the operation of the heat
engine, step 2 above. Present-day gasoline engines convert only a small fraction
of the "heat energy” released in their cylinders into useful work. Since we are
being pinched by energy shortages, why not gear up a research program to develop
engines with (say)} 90% efficiency? Again, this too is impossible!

These are illustrations of the fact that energy is often unavailable (or only
partially available) for conversion into work. There is a fundamental 1imit

to the efficiency that can be obtained in this conversion - a 1imit that cannot
be surpassed, regardless of technological developmenis. The basis of that Tlimit
is the subject of this module.

&

*Student should i1l in the blanks as appropriate.
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STUDY GUIBE: Second Law and Entropy

PREREQUISITES

Before you bzgin this module, you should be
you should be able to:

Location of
Prerequisite Content

*Hrite the equation of state of an ideal gas and
find one Parameter in terms of the others. Xnow
that the internal energy is a function only of the
absolute temperature for an ideal gas {needed for
Objective 3 of this module)

*Write and evaluate the expression for work done by
or on 2n ideal gas by various processes {needed
for Objective 3 of this moduleg

*State and use the first law of thermodynamics; and
describe the absolute-temperature {K) scale and
how o convert degrees Celsius to kelvins (needed
for Objective 3 of this module)

*Calculate the specific heat at constant volume for

an ideal gas (needed for Objective 3 of this module)

*Solve problems involving the latent heats of fusion
and vaporization and specific heat (needed for
Objective 3 of this module)

Kinetic Theory
of Gases Module

Temperature, Heat,
and Thermodynamics
Fodule

Temperature, Heat,
and Thermodynsmics
¥odule

Kinetic Theory
of Gases Hodule

Temperature, Heat,
and Thermodynamics
HPoduile

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Definitions - Define the fo]]owing; {a) reversible process, (b) irreversible
process, (c) state variable, {(d) cycle, (e) efficiency, (f) Carnot cycle, and

(g) entropy.

2. Second law of thermodynamics - State the second law of thermodynamics as it
relates to entropy on a macroscopic scale, and show that the second-law
statements relating to heat flow satisfy this statement.

3. Entropy - Solve problems involving the following concepts: (a) efficiency
and heat cycles from pV diagrams or from information necessary to construct

pV diagrams; (b) Carnot cycles; and/or (c) entropy.

GENERAL COMMENTS

1. Definitions

The important definitions to know for this module are the following:

6




STUDY GUIBE: Secend Law and Entropy 3

{a) Reversible process: a process that, by a differential change in the
envirorzent, can be made to refrace its path. Hote: reversible processes can
be represented graphically since at any time the system is (essentially) in
equilibriun.

{b) Irreversible process: a process that, by a differential change in the
environtment, cannot be made to retrace ifts path. Hote: irreversibile processes
cannot in general be represented graphically since sgne irreversible processes
involve nonequilibrium states, which cannot be represented on a graph.

(c) State variable: a variable such that the integral over any closed path of

the differential of that variable is zero, symbolically f ds = 0, where s i5 the
symhol representing the state variable. HNote: recall the definition of a
conservative force in Conservation of Energy and note the similarity beiween

this definition and the definition of a state variable. State variables that

you have encountered in thermodynamics so far are: U (internal eneray), p (pressure),
T (temperature), and ¥ {volume). BDifferential increments of variables that are

nos ;;ate varizbles will be represented by slashes through the ds, e.g., £§

an .

(d) Cycle: a sequence of processes that a system gees through, such that the
system returns to its original equilibrium state. Hote: cycles can be either
reversible or irreversibie.

(e) Efficiency: e = “outhin for 2 cycle.

(f) carnot cycle: a cycle consisting of two reversible adiabatic processes
and two reversibie isothermal processes.

(g) Entropy: dS = d0/T, where S is the entropy, Q is the heat, and T is the
absolute femperature. Hote: The notation indicates that entropy is a state
variable whereas heat (4Q) is not.

2. The Second Law of Thermodynamics

Jn your previous study of physics you have been concerned with conservation laws.
i.e., conservation of eneray (Conservation of Energy, Temperature, Heat, and
Thermodynamics), conservation of linear momenfum (Collisions}, and conservation
of angular momentum {Rotational Dynamics). Now we are going to consider a
fundamental 1aw of physics that 1s not a conservation 1aw. In this case the 1aw
relates to a guantity that can never decrease when all parts of the interaction
are considered. You already have considered a quantity that can proceed in one
direction only, namely, time. You know from personal experience that people are
born, age, and then die and not the other way around. This fundamental law we
shall now study is necessary in order to understand why certain phenomena occur
the way they do; for example, when we mix hot and cold water together the entire
mixture comes to an equilibrium temperature somewhere in between the two initial
temperatures. It never occurs {although according to statistical mechanics there
is an infinitely small probability that it might) that the water that was initially
hot gets hotter and the cold water gets colder. It would not violate the first
law of thermodynamics {if the hot water did get hotter and the cold colder}, thus
we need another 1aw to explain why this never happens. This law is simply called
the "second 1aw of thermodynamics” (indicating that physicists have very 1little

7




STUDY GUIDE: Second Law and Entropy 4

imagination). Your text gives several equivalent statements of the second 1aw.
The one that you should mexorize (since it is more general and the other state-
pents can be obtained from this statement) is

SECOND LAY OF THERMODYNAMICS

|

You will see that the second law of thermodynamics appiied to reversible processes
gives 25 = 0, and applied to irreversible processes gives aS > 0. Since all

real processes are irreversible, the second l1aw should read something to the eifect
that for all real processes 25 > 0. However, since the analysis of reversible
processes can yield puch vaiuable information (1ike the analysis of projectile
rotion in the absence of perturbing effects 1ike wind, etc.) we shall use the
statement given above as our definition. Our analysis of the ramifications of

the second 1aw will for the most part (some of your texts briefly mention micro-
scopic ramifications of the second 1aw) be concerned with the macroscopic domain.
For a more fundamental understanding of entropy and the second law, you are referred
to the excellent ftext: Statistical Physics by Reif.*

A process that starts in one equilibrium state and ends in another will
proceed 10 the direction that causes the entropy of the system plus its
environment o increase or to remain the same.

3. Important Concepts

In addition to the second law of thermodynamics, the other important concepis in
this module are

{a) Efficiency. Loosely speaking, the efficiency of a process is the measure Of
what we get out of the process divided by what we put into it. In thermodynamics
we are concerned with heat engines {cycles involving an exchange of heat), and
thus we define efficiency more Precisely as given above in the definitions.

(b) The Carnot cycle. The Carnot cycle is important since the most efficient
engine operating between two temperature reservoirs is that utilizing a Carnot
cycle. The efficiency of the Carnot cycle is given by

e=1-Tc/Th

and is independent of the working substance, e.9., an ideal gas or peanut butter.
Since the efficiency is independent of the working substance we can define an
absolute-temperature scale by use of the Carnot cycle. This temperature scale
happens to be identical to the Xelvin scale introduced earlier in Temperature,
Heat, and Thermodynamics. (This alsc shows that, whereas physicists may not be
very imaginative, they do plan ahead.) Since they are easy to deal with, much of
the material and many of the problems involve ideal gases; however, the concepts
are general.

*Y. X. Reif, Statistical Physics (McGraw-Hi1l, tiew York, 19XX), Berkeley Physics,
Vol. VY.
8




STUDY GUIDE: Second Law and Entrory

(c) Entropy. Entropy is a state variable of thermodynamic systems, and is involved
in a tundamental law of thermodynamics, namely, the second law. It is also a measure
of the disorder of a system; however, we shall not go into this aspect of it in the

present module (see Reif* for elaboration).

(d) Adiabatic process. You need to know that for an ideal gas widergoing an
adiabatic process, if 4Q = 0, then

p¥' = const (v = Cp/Cv)-




STUDY GUIDE: Second Law and Entropy 6(B 1)

TEXT: Frederick J. Bueche: Introduction to Physics for Scientists and Engineers
(McGraw-Hi11, New York, 1975}, second edition

SUSGESTED STUDY PROCEDURE

Read Chapter 17, Section 17.4. Then, read sections 17.5 through 17.11, Notes:
The sentence in the first paragraph of Section 17.5 beginning "Let us consider...,"
is misleading: Real engines cannot be represented on a pV diagram, since in real
engines one does not have an equilibrium situation at any time during the
operation. However, one can approximate the operation of a real engine by a
well-chosen reversible cycle that can be represented on a pV diagram, and which
then can be analyzed according to well-known thermodynamic procedures.

In Section 17.6, in the second paragraph the sentence, "When the system reaches
point B it is suddenly (and therefore adiabatically) expanded along curve BC,"

is misleading. A sudden expansion is adiabatic by its very nature since there is

no time for heat to be transferred. However, a Carnot cycle is a reversible cycle -
@ sudden expansion is an irreversible process and therefore cannot be part of a
reversible cycle. The statement should be reformulated to read: "...it is expanded
adiabatically - that is, slowly enough to be considered reversible yet quickly
enough so that a significant amount of heat is not transferred to the gas from

the environment. Both of these conditions can be satisfied by the use of sufficient
insulation. Similar statements apply to the statement in the next paragraph dealing
with an adiabatic compression. Equation (17.15) in Section 17.7 applies to a

Carnot cycle independently of the working substance even though it was derived

for an ideal g9as. In the first full paragraph under £q. {17.15) the sentence

should read: "Although it applies only to the Carnot cycle, it nevertheless sets

an upper limit for all other cycles, since they are less efficient than the Carnot
cycle,”

| | BUECHE |
Objective Problems with Solutions Assigned Additional
Number Readings Problems Problems
Study Text Study  Text {Chap. 17)
Guide Guide (Chap. 17)
1 Secs, ]7.2,
]7:]0, 17.6
2 General
Comments,
Sec, 17.11
3(a) Secs. 17.5, A D 17 Quest.? 9
17.6 to 12
3(b) Secs, 17.6, B E Probs. 15, 18
17.7
3(c) Secs. 17.10, C 111us.2 17.4, F 19, 21 Probs. 20, 22,
17.11 17.5, Sec., 17.11, 23
Cases 1, 2

911lus. = I1lustration(s). Quest. = Question(s). 10




STUDY GUIDE: Second Law and Entropy 6{B 2)

You should be able to show that the statement of the second law of thermodynamics
given at the beginning of Section 17.8 {p. 311) follows from the statement given
in the last sentence of Section 17.11 {on p. 320 prior to the Questions) and from
our formulation in General Comment 2. Work Problems 17, 19, and 21 in Chapter 17
of your text and Problems A through F in this study guide. When you think you
know the material well enough to satisfy the objectives, take the Practice Test.

11




STUDY GUIDE: Second Law and Entropy _ 6{HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read Example 5 in Section 21-6 (Chapter 20, pp. 385, 386). Then read Sections
21-1 through 21-8. Work Problems 1, 5, 7, 11, 16, 21, and 33 in Chapter and
Problems A through F in this study guide. When you think that you know the
material well enough to satisfy the objectives, take the Practice Test.

HALLIDAY AND RESNICK

Objective Problems with Assfigned Problems Additional
Number Readings Solutions Problems
Study  Text Study Text  (Chap. 21)
Guide (Chap. 21) Guide (Chap. 21)
1 General Quest.? 4,
Comments, 7, 2, 5, 6,
Secs, 21-2, 10, 11, 18
21-2, 21-6,
21-3
2 General Quest. 3
Comments,
Secs. 21-1,
21-8
3(a) Secs, 21-3, A D 11, 16 Probs. 10, 14,
21-5 17, 18, 19
3(b) Sec. 21-3 B Ex.?1,2 E 1, 5, 7 Quest. 8, 9,.
12, Probs. 2,
3, 8
3(c) Secs, 21-6, . C Ex. 3, 4 F 21, 33 Quest. 14 to
21-7, 21-8 17, Probs. 20,
23, 25 to 32
a [

Ex. = Example(s). Quest. = Question(s).

12




STUDY GUIDE: Second Law and Entropy 6(SZ 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Hesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PRGCEDUSE

Read Section 19-13 in Chapter 19. Then read Sections 19-14 through 19-24. Hote:
Your text does not distinguish beiwsen state variables and nonstate variables.
Make sure you understand this distinction from the material in General Comment 1.
When you think that you do, write the first 1aw of thermodynamics in differential
form, distinguishing state variables from nonstate variables. (See answer at the
bottom of this page.) If you missed this, review the material again - if you
still do not understand this, ask your tutor for assistance.

You should be able to show that the statements of the second 1aw of thermodynamics
given in Sections 19-18 and 19-19 (pp. 274, 276€) of the text follow from the
statement given in Section 19-24 (p. 280), and General Comment 2. Work Problems
19-24, 19-26, 19-31, 19-32 in your text, and Problems A through F in this study
guide. Hhen you think that you know the material well enough to satisfy the
objectives, take the Practice Test.

SEARS AND ZEMANSKY

Objective problems with  Assigned Problems  Additional
Humber feadings Solutions Problems
Study Text Study Text
Guide Guide
1 General
Comments,
Secs. 19-20,
19-14, 19-23
4
2 General
Comments,
Sec. 19-24
3(a) Secs. 19-14 A D 19-24 19-23, 19-25,
to 19-17, 19-19, 19-30
19-20
3{b) Secs. 19-20 B E 19-26 19-27 to 19-29
to 19-22
3(c) Secs. 19-23, ¢ Ex.21, ¥ 19-31,
19-24 2, 3 19-32
(Sec.
19-23)

9Ex. = Example(s).

13 “M¢ - bF = np :aemsy




STUDY GUIDE: Second Law and Entropy 6(HS 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
{Allyn and Bacon, Boston, 1973), second edition, Vof. 1

SUGGESTED STUDY PROCEDURE

Read Chapter 18, Section 18-6, and Chapter 21, Sections 21-1 through 21-6.
Hotes: Your text does not define the concept of state variable explicitly but,
rather, alludes to it in the discussion of Eq. (19-13) (pp. 428, 429). Study
the definition given in General Comment 1. When you think that you understand
this definition, write the first law of thermodynamics in differential form,
distinguishing state variables from nonstate variables. (See answer at the
bottom of this page.) If you missed this, review the material again - if you
still do not understand this, ask your tutor for assistance.

in Section 21-2, on p. 430, the sentence beginning "Chemical or nuclear
potential energy...” is misleading. Although it is theoretically possible to
cuonvert chemical or nuclear potential energy into thermal enargy with 100%
efficiency, the author of this module is unaware of any practical device that
does so. MWork Problems 21-5, 21-6, 21~9, 21-11 in your text and Problems A
through F in this study guide. When you think that you know the material weil
enough to satisfy the objectives, take the Practice Test.

WEIDNER AND SELLS

Objective Problems with Assigned Problems Additional
Number Readings Solutions Problems
Study Text’ Study Text
Guide Guide
1 Generai

Comments ,
Secs. 21-1,
18-6, 21-2,
21-4, 21-5

2 General
Cormients,
Sec. 21-6

3(a) Secs. 21-1, A Ex.? D 21-5 21-2, 21-4
21-2 21-1

3(b) Secs. 21-3, 8 Ex. E 21-6 21-7, 21-8
21-4 21-2

3(c) Secs. 21-5, C Ex. F 21-9, 21-10, 21-12,
21-6 21-4, 21-11 21-13, 21-14

21-5,
21-6

3x. = Example(s).

o 14 "MP - OF = np iIemsuy




SiUDY GUIDE: Second Law and Entropy 7

PROBLEM SET WITH SOLUTIONS

A(3). The gas in the internal combustion engine in your car undergoes a process
that can be approximated by a cycle called the Otto cycle. The Otto
cycle consists of (1) an adiabatic compression from V; to V,, (2) a
pressure increase at constant volume V,, {3) an adiabatic expansion
from ¥, to V., and {4) a pressure decrease at constant volume V, back
to the original pressure.

{a} ¥hy can we not aqalyze the real process that the gas undergoes in
an internal combustion engine?

{b) Draw the Otto cycle on a p¥ diagram.

{c) Assuming that the gas is an ideal gas, shcw that the efficiency of
the 0tto cycle is

e=1 - (V) " 1

where y = { /C For an ideal gas, Cp = C + R.
{d) what 15 the efficiency of an engine whose compression ratio V /Vz

is 10 and whose v = 1.40?

Solution

{a) The gases in real engines undergo irreversible processes that cannot be
plotted on a pV diagram, since the gases are never in an equilibrium state
{and only eguilibrium states can be represented on a pV diagram).

{b) See F1gure 1.

{c) e = H{Q Since work is done only during the adiabatic processes, let

us find an expression for work for an ideal gas during an adiabatic process:

di = p dv, pv‘f=c=p1.‘1!,

Ve
v
W= [T av=clris v"‘fl = 1oy oy
1 i
v, v Ve
psYY g -
= A [V} Y V} 1. (1)

Now the only time heat enters or leaves the gas is during the constant-
volume process: dQ = nc dr. Q occurs during process b + c. Since p is

increasing as V remains constant nT increases, or heat is added to system:

0, = (T - T,). (2)




STUDY GUIBE: Second Law and Entropy 8

How 1et us calculate the total work. WUsing Fquation (1), we have

LERIPR S [Pc\’g/('l - Y)](V} -Y_ 1;; Y [pa\q'/(] - Y)](V; -Y_ "’}

How Qin = "CV(TE - Tb), thus

Yyl =Y _ Wl - ¥ Yyl ~Y o1 - ¥
GVl -Yp el -V D)
(7 -, {7, - T,)

Pt LV = V,) - 13+ p vty T Y- 1
(1= ORC(T, - 1) ’

where UZIV} = .

nRT (¥ =1 - 1) + nRTa(a] “Y_q)
®° (T - NnC,(T_ - 1) '

flow use the fact that C_ = Cv + R for ideal -gases- io eliminate R:
-1 - -1 -
T " oy e " Yo G T " Y-1)
T .
c

O] L/ CRE ) [ :

o

Since pav}' = pbv",

Yy -1y . Y -1 y- 1, _ y -1
pavl (V-I ) pbvz( Vz ) » "RTa(V'I ) = “RTb(vz ) ’

or
-1
Y- _ oy -1 iy
T.v) =TV} and T = T‘;
Thus

_Tc(cD’“--l)+T‘|;‘Y & " Y- 1) Tc(a""-l)”bn-a"'])

-1 Tb - Tc

1-o~ 1
=1 . Y -1
Or e=1 (VZIV])

1.00 - (0.100)%% = 1.00 - 0.40 = 0.60.

(d) e

16

-‘Y).




STUDY GUIDE: Second Law and Entropy 9

B(3). A Carnot engine is operated as & refrigerator. If the high-temperature
reservoir is at 308 K and the low-temperature reservoir is at 270 X, find
the amount of heat that can be removed from the 1ow-temperature reservoir
in 18.0 min iT the power input is 200 w.

c
Ap Th
i Qout

. b . w

Figure 1 _ d Figure 2 =

Qin

2 T
i t c
> V
AP Vi

Solution
See Figure 2. Ye are given that P = 200 w, Tb = 270 X, and Th = 200 K. We are

to find Qi = 22 4n 70.0 min.

c_ B [ H
E'-'] = Q =“+Qo, -I-__': >
Ty ﬁout out in Ty W0y
TR T T, - T, +7T T
Ty ) i hoThtTe |
W+ 05, T,-1  Yn "”(T T ) -1=% T T, “(T - T )s

dQ; /ot = (dW/dt)[T /T, - T.)], P = di/at.
dg; ,/dt = (200 w)[270 K/{(300 K - 270 K)J = (200 w)9.0 = 1800 w.

inn 10.0 min 10.0 min
0, = I‘EE dt = 5 (1800 w) dt = {1800 w) ‘J)’ dt

(1800 w)t]o%-% ™ = (1800 w)(10.0 min)(60 /1 min),

1.80{10°){10)(6.0)(10)w = 1.10(10%) 3 - reasonabie??

o~
|

C{3). {a) A mass m (specific heat C) is heated from T to Ty. Show that the
entropy change is given by AS = mc 1n(T2/T]).

{b) Does the entropy of this substance decrease on cooling? If it does,
explain how this -an happen in 1ight of the second law of thermodynamics.

L

17




STUDY GUIDE: Second Law and Entropy 10

Solution

Given M, C, T, = T;, and Tf = T,, ve are (a) to show that S, - 53 = mc 1n{T2/T]);
and (b) show if #Q0 < O whether dS < 0, and if so, show how this occurs in 1light
of the second law. '

(2) 40 = mC dT,  dS = gQ/T,  dS = mC d1/T,

S

L7 Yo,

1 15 15
ds = mC [ 2(d1/T), S, -S; = InT]?
2 I N

52 - S] = ml 1n(T2/T]) dimensions?? 1Is the answer reasonable? How does it
depend on m? C? Té? T]?

(b} On cooling Té <Tq

1n(T2/T]) <0, S, - S.I < 0.

2

The total entropy will remain unchanged if the process is reversible, since the
_entropy of the environment will increase by just.the right amount to maintain the
entropy at a constant value. If the process is irreversible then

|ds {ds

. > .
enV1ronmentI substancesI

The total entropy will increase.

Problems

D(3). One moie of an ideal gas passes through the cycle shown on the pV diagram
in Figure 3. Al1 answers are to be expressed in terms of p,, V,, T.,, and
R. v = 5/3. LR
(2) Find p,. (b) Find pg and T;. What s the net work done in one cycle?

A o 1 isothermal
A 2
Figure 3 [ 3
adiabatic
i e Vv
V4 3V,

18




STUDY GUIOE: Second Law and Entropy 11

E{3). (a) A Carnot engine operates with a hot reservoir at 480 K. If this
engine has an efficiency of 30%, what is the temperature of the cold
reservoir?

{b) A real steam engine operates with the same cold reseryoir as in part
{a) with the same efficiency; what do you know about its hot reservoir?

F(3). One end of a cylindrical rod is thermally in contact with a2 heat reservoir
whose temperature is 127°C; the other end is thermally in contact with a
heat reservoir whose temperature is 27°C., After the rod has achieved
steady-state conditions: (a) Compute the change in the entropy of the
universe due to 5021 J of heat flowing through the rod. (b) Ooes the
entropy of the rod change during this process? ¥hy or why not?

Solutions

B(3). (a) Use T = Té to find p, = p,/3.

(b) Use V, = V, and p3v§ = p,V] to find p, = 0.160p, and T, = 0.48T.

{c) Use W= fp di to find ¥ = 0.320RT,.

E(3). {a)e=1- TJT., Tc 280 K.

(b) €Carnot 2 eany other device operating between the Same iwo temperature reservoirs

Th(steam) 3-Th(Carnot)'

FI3). (8) S,y = 4-2 JK.
{b) o, the rod does not change its state. Since S is a state variable, 4S_ 4 = 0.

PRACTICE TEST

1. Define: (a) state variable, {b) efficiency, and (3) entropy.

2. State the second law of thermodynamics as it relates to entropy on a
macroscopic scale, and show that the second-l1aw statements relating to heat
flow satisfy this statement.

3. {a) A Carnot-cycle heat engine operates between a thermal reservoir at a
temperature of 140°C and a reservoir at 40°C. If the engine does 2092 J of
work, calculate the heat taken in and the heat rejected.

{b) Calculate the change in entropy of the engine for each process of the
Earnot %ytle in part {(a), and then calculate the total entropy change for
Ehe cycle.

19




STUDY GUIDE: Second Law and Entropy 12

Practice Test Answers

1. (a) A variable such that the integral over any closed path of the differential
of the state variable is zero, symbolically f dS$ = 0.
(b) e = ”out/qin over a cycle.

(c) dS = 40/7, where S is the entropy, Q heat, and T the absolute temperature.
2. A process thaet starts in one equilibrium state and ends in another will go in

the direction that causes the entropy of the system pius its environment to
increase or to remain the same.

One of the second-law statements relating to heat flow is: “There can be no

process whose s5.e offect is to convert & given amount of heat energy into work."
ApPlying the seconl-law statement relating to entropy to an engine whose only effect
is to convert heat into work we have 45 < 0, since an amount of heat is taken from
the heat reservoir. This violates the entropy statement of our second law;
therefore, the above process is impossible.

The other second-law statement relating to heat flow is "There can be no process
whose sole effect is to iransfer an amount of heat from a low-temperature reservoir
to a high-temperature reservoir.” Applying the second-law statement relating to
entropy to an engine whose only sffect is to transfer heat from a low-temperature
reservoir £0 a high-temperature reservoir we have

1 _ 3_4
Tn TC

Now 1/Tn < Tch; therefore 4S5 < 0, which violates the entropy statement of the
second law. Thus this process is also impossible.

W
3. (a)e-= 6955-= 1 - Tﬁ' for a Carnot cycle.

Y
_ _out _ 2092 J - 3
%n"]-%ﬁh'1-HBKyMBK) 8.7 x 10" d,

- _ o 3
Oout = Qip ~ Mouy = 6-6 x 107 J.

{b) dS = dQ/T. For tio adiabatic parts of cycle 4¢ = O, AS = 0. For a high-
temperature isothermal process: T constant,

AS = AQY/T = (8.7 x 10°3)/(413 K) = 21.7 J/K.




STUDY GUIDE: Second Law and Entropy 13

For a low-temperature isothermal process: T constant,

S = (-6.6 x 10° /{313 K} = -21.1 3/K,  4S 0.

total

This is reasonable since the Carnot cycle is a reversiole cycle and 45 = O for
reversible cycles.

If you got 100% on this Practice Test, ask for a Mastery Tests; if not, study the
relevant material, work some more of the Additional Problems, and when you think
that you understand that material ask for a Mastery Test.

21




SECOND LAY AND ENTROPY Date

pass recycle
Mastery Test Form A
1 2 3

Hame Tutor

1. Define (a) state variable, {b) cycle, and {c) entropy.

2. State the second 1aw of thermodynamics as it relates to entropy on 2
macroscopic scale, and show that the second-law statements relazing to
heat flow satisfy this statement.

3. Four moles of an ideal gas is caused to expand from a volume V} to a volume
vV, (= 2V,).

(a) If the expansion is jsothermal at the temperature T = 400 K, deduce an
expression for the work done by the expanding gas.
(b) For the isothermal expansion just described, deduce an expression for

" the change in entropy, if any.
(c) If the expansion were reversibly adiabatic instead of isothermal, would
the change in entropy of the gas be positive, negative, or zero?

4. A pY diagram of a Carnot cycle is sketched in Figure 1.

(a; Is the device operating as an engine or a refrigerator?

b} In which part{s) of the cycle does heat flow into this device? Out of it?
c) In which part(s) of the cycle does the temperature of the working substance
increase? Decrease?

(d) Does the entropy of the working substance decrease in any part of this

cycle? If mot, prove that it cannot; if so, indicate in which part of the cycle.

Figure 1 pA b

>V
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SECONO LAW ANO ENTROPY Date

pass recycie

Hastery Test Form B

1 2 3

Hame ) Tutor

3.

Oefine (a) irreversible process, (b) efficiency, and (¢) Carnot cycle.

State the second law of thermodynamics as it relates to entropy on a
macroscopic scale, and show that the second-law satements relating to heat
flow satisfy this statement.

A Carnot refrigerator takes heat from water at 0°C and discards heat to
the room at a temperature of 27°C. If 100 kg of water is frozen to ice at
0°C by this refrigerator (the latent heat of fusion is 335 J/9.

(a) How many joules are discarded to the room?

{b) what is the required work?

One mole (63.5 g) of copper at 100°C is placed in a block of ice and remains
until the whole comes to thermal equilibrium at 0°C. The latent heat of

" fusion (the amount of heat necessary to convert 1.00 g of ice to 1.00 g of

water at 0°C of ice is 33 J/g9. The specific heat of copper is 25.1 J/mol K.
{a) How much water is formed? . .

b) What is the entropy change of the copper?

Ec What is the entropy change of the water?

d) yhat is the total entropy change of the system?
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SECOND LAY AND ENTROPY Date

pass recycle
Mastery Test Form C

1 2 3
Name Tutor

1. Define (a) state variable, (b) cycle, and {c} entropy.

2. State the second law of thermodynamics as it relates to entropy on a
macroscopic scale, and show that the second-law statements relating to heat
flow satisfy this statement.

3. (a) Calculate the efficiency of an engine using. an ideal gas taken around
the cycle shown in Figure 1, where v = 5/3. For an ideal gas, C_ = cV + R,

(b) Draw a Carnot cycle on a temperature-entropy (7S) diagram. Work is Just
the area enclosed by the curve representing a cycie on a p¥ plot. Can a
similar interpretation be made regarding a TS plot?

pﬁ\
Figure 1 2p; |-~ .
o d2=0
p- . a a—

! $ '
! '
1 1

v

vy Zvl >
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SECONO LAW ANO ENTROPY Oate

pass recycle
Mastery Test Form 0
1 2 3

Name Tutor

1. Oefine (a) irreversible process, (b) efficiency, and (c) entropy.

2. State the second law of thermodynamics as it relates to entropy on a
macroscopic scale, and show that the second-law statements relating to heat
flow satisfy this statement.

3. (a) Calculate the efficiency of an engine using an ideal gas taken around
the cycle in Figure 1, where U = (BJZ?RT, ¢, = (3/2)R and Cp = (5/2)R for
this gas.

(b} In a specific-heat éexperiment 100 g of lead (Cp = 0.144 J/g X) at 100°C

is mixed with 200 g of viater at 20°C. Find the difference in entropy of
the system at the end from its value before mixing.

Figure 3} DA

Zpl [ e D PE AN -

[Jl e v

> V
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SECOND LAW AND ENTROPY A-1

MASTERY TEST GRADING KEY -~ Form A

1. What To Look For: (a) f dS = 0. {c) Absolute temperature.

Solution: ({a) A variable such that the integral over any closed path of
the differential of the state variable is zero, symbolically f dS = 0.

{b) A sequence of processes that a system goes through such that the system
returns to its original equilibrium state.

{c) dS = 4Q/T, where S is the entropy, Q is the heat, and T is the absolute
temperature.

2. What To took For: &S > 0.

universe —

Solution: A process that starts in one equilibrium state and ends in
another will go in the direction that causes the entropy of the system plus
jts environment to increase or to remain the same,

One of the second-law statements relating to heat flow is: *There can be

no process whose sole effect is to convert a given amount of heat energy into
work." Applying the second-law statement relating to entropy to an engine

whos2 only effect is to convert heat into work we have AS < 0, since an

amount of heat is taken. from the heat reservoir. This violates the entropy
statement of our second law; therefore, the above process is impossibie.

The other second-law statement relating to heat flow is "There can be no

process whose sole effect is to transfer an amount of heat from a low-tsmperature
reservoir to a high-temperature reservoir.” Applying the second-law statement
relating to entropy to an engine whose oniy effect is to transfer heat from a

low-temperature reservoir to a high-temperature reservoir we have

Te

Now 1/Tn < 1/Tc; therefore AS < 0, which violates the entropy statement of
the second 1aw. Thus this process is also impossible.

AS = .g—+9._= Q(J—_ l—).
Tn Tn TC

3. What To Look For: {(a) W= {p dV, pV = nRT. (b) Use of first law to deduce
expression for entropy. {c) dS = 40/T, #Q = 0.

Solution: {2) n = 4.0 mol, pV = nRT.

v

£ v
W= 6 % dV = nRT 1n(u—f) = 3200 1n(8.4 J).

i 1

{(b) du = 0 since U = U(T) for an ideal gas. #Q = g dS = ¥ or
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SECOND LAW ARD ENTROPY A-2

as = fB4 = 1 = 8 in(8.4 W/x).
{c) 45 = 0.

#hat To Look For: (a) Use the fact that the Carnot cycle is independent of
Wworking. substance. HNow use an jdeal gas as working substance. Recognize
which are isothermal and which are adiabatic. Utilize first law and the fact
that U = U(T} for an ideal gas to deduce sign of dQ.

Eb} Same as part (a}.

c} Utilize p¥ = nRT t¢ deduce regions where 8T > 0 and 4T < 0.

(d) dS = 4Q0/T. IfdQ=0, AS=0. If 40 <0, 45 <0. If#Q>0, &S >0.

Solution: (a} In a refrigerator, a - b high-temperature compression,
dU = 0; therefore A0 = #W, ﬂﬂa b © 0; therefore dQ < Q.

Heat leaves system at the high-temperature reservoir, therefore this is a
refrigerator.

(b} c »~ d is Qin’ a—+bis Qout‘

{(c)d—+aisaAT>0, b+c is AT <0.
(d} Yes, a + b. ‘
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SECONO LAW ANO ENTROPY B-1

HASTERY TEST GRAQING KEY - Form B

1.

Solution: {(2) A process that, by a diiferential change in the environment
cannot be made to retrace its path.
(b) e = Hautfoin for a cycle.

{c) A cycle consisting of two adiabatic processes and two isothermal processes.

What To Look For; ﬂsuniverse > 0.

Solution: See solution to Problem 2 in Mastery Test Grading Key - Form A.

¥hat To Look For: {a) Recognize that a Carnot cycle is a reversible cycle.
i fﬁh = T;?ih for Carnot cycie. ( =nl,

C

(b) ” = qi‘l - QC'

Solution: (a) Q_ = (10° g)(335 3/g) = 34 x 10° 4,
Q, = (T,/7,)0, = (300/273)(34 = 10° 3) = 34 = 10° 9.

This is reasopable since Qh Qc.

() ¥ = 3.3x10°% 3,

What To Look For: {a) Energy conserved.
{b) dS = dQ/T.
(c} dS = dg/T.

Solution: (a) mL = mCuCCu ﬁTCu’

n = {100 mo1}(25.1 J/mol X)(100 k) _
335 J/g

(b} 8Sg, = mcf(dT/T) = (25.1 9/K) In(273/373) = -7.9 J/K.

(€} 8BS, ¢0p = ML/T = (7.5 9)(335 9)/(273 X g) = 9.2 /XK.

{(d) as = 1.26 J/K.

7.5 9.

total
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SECOND LAW ARD ENHTROPY c-1

MASTERY TEST GRADING KEY - Form €

1. ¥hat To Look For: {a) fdS = 0. {c) T = absolute temperature.

Solution: {a) A variable such that the integral over any closed path of the
differential of the state variable is zero, symbolically fdS = 0.

(b) A sequence of processes that a system goes through such that the system
returns to its original equilibrium state.

{c) dS = 4Q/T, where S is the entropy, Q the heat, and T the absolute
temperature.

2. what To Look For: &S, ... .. >0.

Solution: See solution to Problem 2 in Mastery Test Grading Key - Form A.

3. What To Look For: & = W/Q, , &0 = nC AT, 20 = nCp AT. W= [pdv.
& =0, pV? = const for ideal gas. pV = nRT for ideal gas.
{(b) Recoanize definition of Carnot cycle two 2Q = 0 and two AT = O processes.

ds = 4Q/T.
Solution: (a) For the work done by the adiabatic process:
f v 1 -1'F 29y -2/3 -2/3
%mew=lb“=°6.;?=°le“ ly, = —(zray L&) - )
i

= 3pvi[27 23 - 11 = 3p D - 2723 = 1.10 p ¥,

wdone on p]V].
Therefore, wtota] = 0.10 p]V].

Qin = ncv AT, Tf = 2p]V]/nR, Ti = in]/nR.

Therefore Qin = ncv(p]V]/nR) = p]V]/(Y -1) = (3/2)p]V].

Therefore e = 0.067.

(b) See Figure 7. Area = JT dS. 4Q = T dS. Therefore, AQ = area on TS plot.

TA

Figure 7 29




SECOND LAW AND ENTROPY D-1

MASTERY TEST GRADING KEY - Form D

1. Hhat To Look For: (c) T = absolute temperature.

Solution: {a) A process that by a differential change in the environment
cannot be made to return to its path.
{b) e = out/Q for a cycle.

{(c) dS = 4Q/T, where S is the entropy, Q is the heat, and T the absolute
temperature.

2. What To Look For: ésuniverse > 0.

Solution: See solution to Problem 2 in Mastery Test Grading Xey - Form A.

3. What To Look For: {a) e=W/Q; . W= fp dV. Calculate heat on straight
part by using first law and sH. AQ = nCv AT, 80 = ncp 4T, pV = nRT.
{b) dS = £Q/T. d0Q = nc dI. Conservation of energy.

Solution: {a) By inspection of the Tigure, we see that

Heotal = (V/20Vqs Qg = Uy *+ Wy

Hap = (3/2)p¥,, U, = (3/2)R(T, - T,),

Ta = p-l‘.’]/nR, Tb = 4p.|V.|/nR, Uab = (3/2)R(3p]V]/nR) = QD]V-IIZ,
Qab = Qp]v]/z + (3/2)p]V] = Splvl {it's positive)

Qab is part of Qin

ch: AT < 0, therefore ch <0,

Q.,: AT <0,  therefore Q_, <0
Or

= {1/2){py¥;/6p,¥;) = 1/12.
(b) dS = 49/T = mc(dT/T). Therefore AS = mc In(T/T.).

BScys = BSpp * 85, Mo Cpp ATpy = m C. AT, mech(TPbi =mc (T-T, ),
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SECOND LAY AND ENTROPY D-2

mechTPbi * muchwi
T =
mec?b * mﬂcw

= (100 g)(14.4 x 1062 J/q°C)(100°C) + (200 g)(4.18 I/g°C)(20°C) _ 21.4°¢C
14.4 J3/°C + 836 J/°C o

aspb = {14.4 J3/°C) Tn(294/373) = =3.4 J/°C,
asw = (836 J/°C) 1n{294.4/293.0) = 4.0 J/°C.
Therefore stotal = 0.60 J/°C.
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Hodule
STUDY GUIDE 1

COULOYB®S LAW AND THE ELECTRIC FIELD

IHTRODUCTION

This module begins the study of electricity. Mot only is it true that we see
nature's gigantic electrical show in thunderstorm displays with 1lightning, but
the very functioning of our smallest cells depends on the balance of electrically
charged ions, and their movement through cell membranes. On a larger scale than
cell membranes, water-purification studies with 1arge membranes show promise of
Yelectrically” removing undesired ions or debris from water. The electronic air
tleaner is yet another direct application of the material to come: a 7000-Y
potential difference between a thin wire and flat collecting plates ionizes the
air, and the “flying” electrons attach themselves to dust particiles, which are
then pulled to the collecting plates by strong electrical forces. Since forces
that hold atoms together are ultimately electrical, the study of electricity

is the study of one of nature's truly grand designs.

tater in your study of physics you will see the design unfold further; charges
whose position is constant produce electric fields, charges whose velocity is

constant produce magnetic fields as well as electric fields, and charges that

accelerate produce that special combination of electric and magnetic fields we
know as electromagnetic radiation {radio waves, x rays, microwaves, etc.).

PREREQUISITES
Before you begin this module, Location of
you should be able to: Prerequisite Content
*Add and sﬁbtract vectors {needed for Objective Dimensions_aﬁd
2 of this module) Yector Addition Module
*State Newton's law for linear motion {needed Newton's Laws
for Objectives 1 and 3 of this module) Module
*State the relation between work and energy Work and Energy
{needed for Objective 3 of this module) Module
*Analyze problems involving planar motion under Planar Motion
constant acceleration {needed for Objective 3 Module

of this module)

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Conductors versus insulators - Make the distinction between insulators and
conductors.
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STUDY GUIDE: Coulomb's Law 2

2.

3.

Electric forces and fields - Calculate, for a daroup of point charges at rest,

{a) thz/resu]tant force on one of the charges caused by all of the others,
and/or )

(b} the total electric field at some point in space caused by all of the
charges.

Particle motion in electric fields - Apply the definition of electric field

to solve problems involving a charged particle *n an electric field, where

(a) the particle is at rest under the influence of additional forces, 1ike
gravity or tension, and/or

(o) the particle moves in a constant electric field.

These problems will require you to calculate any of the following quantities:

force, acceleration, time, position, velocity, work, kinetic energy. For

vector quantities you must be able to calculate components, magnitude, and

direction.
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STULY GUIDE: Coulerb's Law 3(B 1}

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engineers
{McBraw-Hi11, New York, 1975}, second edition’

SUGGESTED STUDY PROCEDURE

Read Chapter 18, Sections 18.1 through 18.5, and then Sections 18.9 through 18.12,
and General Comments 1 to 4, Then study Problems A through F before working
Problems G through J. HMake your own decision about working some Additional
Problems before taking the Practice Test and a Masitery Test.

BUECHE
Objective Readings Problems with Solutions Assigned Additionail
Humber Problems Problems
Study Text Study {Chap. 18)
Guide Guide
1 Secs. 18.1, 18.9, Sec. 18.11
General Comment 1
2 Secs, 18.2, 18.3, A, B, C Sec, 18.3, G, H 1to10
18.5, General I11us.® 18.3
Commenis 2, 3, 4§
3 Sec. 18.12 D, E, F I1lus. 18.1 I, d 11, 12, 18,
19, 20

®M1us. = I1ustration(s).
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STUDY GUIDE: Coulomb’s Law 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics {Wiley, New
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read over all of Chapters 22 and 23, Tor background. Then concentrate on a
careful reading of Sections 22-2 through 22-4 in Chapter 22 and Section 23-5

in Chapter 23, Study General Comments 1 throuch 4 and Problems A through F

before working Problems G through J and Problems 2 and 13 in Chapter 22,

Problem 34 in Chapter 23. Take the Practice Test and decide whether to do some
Additional Probiems or take a Mastery Test. Note that cailculating electric fields
due to continuous-charge distributions using calculus is not an objective in this
module, therefore you need not dwell on equations 1ike (23-6) and (23-7).

HALLIDAY AND RESNICK

Objective Readings Problems with Assigned Probiems Additional

Number Solutions Probiems
Study Text Study Text
Guide Guide
1 Secs. 22-2, 22-3, Chap. 22, Quest.d
General Comment 1 3, 6,7
2 Secs, 22-2, 22-3, A, B, Chap. 22, G, H Chap. 22, Chap. 22, Probs.
22-4, General c Ex.q 2, Probs. 2, 3, 4, 5; Chap.
Comments 2, 3, 4 3,4 13 23, Probs. 14 to
17
-3 Sec. 23-5 D, E, Chap. 23, 1I,Jd Chap."23, Chap. 22, Probs.
F Ex. 7, 8 Prob. 34 14, 26; Chap.
239 Probs. 3](3)9
35, 36, 37
a

Ex. = Example(s). Quest = Question(s).




STUDY GUIDE:

TEXT:

Covloth's Law

3(sz 1)

francis Heston Sears and Mark Y. Zemansky, University Physics (Addison-

Wesley, Reading, Mass., 1970}, fourth edition

SUGGESTED STUDY PROCEDURE

Read over Chapter 24 and Chapter 25 through Example 1 in Section 25-2 (p. 343).
Read General Comments 1 through 4 and study Problems A through F before working
Problems & through J and Problem 24-1{a) and (b) in your text.
Test, and decide whether to work some Additional Problems or take a Mastery Test.

Omit Example 4 in Section 25-1 {p. 341).

Take ihe Practice

Also note the text'’s interchangeabie

use of the terms “electric field," "electric field strength,” and “electric

intensity.”

SEARS AND ZEMANSKY

Objective Readings Problems with Assigned Problems Additional
Number Solutions Problems
‘Study Text Study Text
Guide Guide
1 General Comment 1, Sec. 24-5
Secs. 24-1, 24-4,
25-1
2 Secs. 24-6, 25-1, A, B, G, H 24-1{(a), 24-2{(a), (b),
25~2, General c {b) 25-1, 25-6 to
Comments 2, 3, 4 28-9
3 Sec. 25-1 D, E, Sec. 25-1, I, d 24~-3, 24-4,
F Ex.2 1, 2, 25-2 to 25-5,
3 25-11

3y, = Example(s).
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STUDY GUIBE: Coulomb's Law 3(¥s 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
{Al11yn and Bacon, Boston, 1973}, second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Read over Chapter 22, except Section 22-6, then briefly read Chapter 23, except
Section 23-6, without working through any examples. With this background, read
General Comments 1 through 4, and study Problems A through F and Examples 22-1
and 23-3. Then work Problems G through J. Take the Practice Test and decide
whether to take a Mastery Test, or work some Additional Problems. The Additional
Problems on Objective 3 are likely to help you.

WEIDNER AND SELLS

Objective Readings Problems with Solutions Assigned Additionai

Problems Problems
Study Text Study
Guide Guide
1 General Comment 1,
Chap. 22, Intro-
duction, Secs.
22-1, 23-4
2 Secs. 22-2, 22-3, A, B, Ex.? 22-1 G, H 22-5, 22-7,
23-1, General C 22-15, 23-1,
3 Sec. 23-5 D, E, Ex. 23-3 I, d 23-12, 23-15,
F 23-18, 22-9

Ex. = Example(s).
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STUDY GUIDE: Coulomb's Law 4

GERERAL COMMENTS

1. Electric Field

The concept of the electric field is introduced in this module as a force per unit
charge. In your text reading, you will find conductors mentioned as materials in
which charges are free to move, whereas insulators are materials in which charges
are not free to move. Llet us now put these two statements together: When you
establish an electric field in a conductor, the electrons (which are free to move)
feel a force equal to their charge times the electric field and thus initially
accelerate, and a2 current (movement of charge) gets started. If you establish

an electric field in an insulator essentially no current flows, since the charges
are basically not free to move in response to the field. (In an insvlator,
charges can move through distances 1ike an atomic radius before they are stopped
by forces within the atom. This movement in response to an electric field sets

up "dipoles," about which you may learn in a later module.)

The results of this discussion are so important when using Gauss' 1aw in connec-
tion with conductors that we have made it an objective in this module (Objective 1).
You must keep in mind that if charges are moving in a2 conductor, they are responding
to an electric field. If we find that the charges are at rest in a conductor,
however, this means that there is zero electric field in that conductor.

2. Principle of Superposition

This principle is very simple, but very important. It says that if cause A has
?:ffcg)a, and cause B has effect b, then A and B taken together will have effect
in this module, where charges exert forces on each other, this principle
definitely holds; if a charge  feels a force ?é when only charge A is present,
and feels a force ?b when only charge B is present, it will experience a force
that is the vector sum of ?g and ?L when both A and B are present. Since the
electric field at the point where 2 charge § is located is the force felt by
this charge divided by the charge {), the same superposition principle holds for
electric fields: if charge A by itself causes an electric field 35 at some point
in space wheh present by itself, and if charge B causes an electric field Eﬁ at
this same point in space when only B is present, the electric field at that point
when both A and B are present will be the vector sum of 3; and Eb.

3. Coulomb's Law

If we ask for the total force on point charge Q] in the presence of point charge

QZ and point charge Q3, the answer may be written

Fp=Fip + Py (1)
38




STUDY GUIDE: Coulomb's Law 5

where ?]2 is the force on 0 due to 02 and'-F,}3 is the Torce on Q] due to Q3-
From Coulomb's law, the force is

_ 2

%51 = (0,055

directed along the 1ine between Qi and Qj. Therefore,
= 8 2,02 2 v

Flp = (9:0 x 107 8 m%/CH00,/r 7)) (7 5/ 7,5) )
where rio is the distance between Q] and 02 and ?izfrlz = 1o is a "unit" vector
(Tengih = 1) that points along the line in the direction from 0, to Q,. In order
to add F]z and F]3 correctly, we may write

Fr2 = 1{xqp/r10) # 3(¥q5/7))
When we also do this for ?]3 and add, Eq. {1) becomes

9. 2
(9.0 x 10° N n?/¢2)Q.Q, » (9.0 x 10
F = I 2 12)12) 4

12

9

N0t/ g o
r 2 )(r }Jl
12 ¥ 13
g, 2 9. 2 2
QJX1UNmI¥mﬂ&ym\+(lwa N n°/C°)Q;05 ¥y

+ [{ { { )23. (2)
2 p 7 2 p 7
r]z 12 r13 13

PROBLEMS A AND B ARE GOOD EXAMPLES OF THIS PROCEDURE, AND YOU SHOULD GIVE THEM
CAREFUL STUDY. .

4, Electric Fields in Space

These remarks conclude your reading on the subject of the electric field in this

module. The main point to be made is that for a single charge or for a group of

charges, the electric field is not everywhere represented by a single number, or

even one single vector. The magnitude and direction of the electric field depend
on position. In Figure 1, fields Ei, Eé, and E3 are all different in both

E
E 2
vy o;
3 2
+0Q igl




STUGY GUIDE: Coulomb's Law 6

magnitude and direction because the points 1, 2, and 3 are in different locations
in space: the electric field T is a function of coordinates 1ike x, y, and Z -

it changes as x, ¥, and z change. This is again illustrated in Figure 2 for

6 points with respect to an assembly of 20 charges. The arrows are not rigor-
ously correct, but they show what is going on generally: the electric field in

the region between the 1ines of charge is fairly constant, and outside this region,
the electric field is quite small. We often idealize this situation to say that
the field between the "plates” is constant, and the field outside is zero. The
point, however, is that even in the ™ideal" situation, the electric field is a
function of the coordinates: it depends on where you are located in space.

g s %6

+ + + + + + + + + +
2

s

Figure 2

PROBLEM SET WITH SOLUTIONS

A{2). Calculate the total force on the -1.00-uC charge shown in Figure 3.

Solution

Frota1 = F1 * Fa.

Step 1: pick axes 7 and j. Let f be positive along ?é and ; 4 5 at % in the
plane of the paper.

Step 2: sketch all forces (?l and ?é). This gives the signs of the components
right away:
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STUDY GUIDE: Coulomb's Law ) 7
Fy = -(F; sin 8) + (F, cos 8)j, ¥, = +F,3.

Step 3: Calculate ferce magnitudes from F = q]q2/4neor2:

-

9 -12
£ o $9.0x10° Nal/@)2.50 x 1072 F) 0 0ty

1 (32 + 42y of
9, 2 12
F, - (9.0 x 10° fi m ,2'1:2%(2.00 x 1072 ) e 03
4" m

Step 4: add components to get the resultant:

(9.0 x 107 N)(3/5)7 + [(9.0 x 1074 W)(475) + (1.13 x 1073 W) )5

Frotal =
= (5.4 x 1077 1)1 + (18.5 x 1072 §)3.
Figure 3 Figure 4
@72uC
i
-2uC
1
, ¢
: e
I 4 m L '
- a
8 +2uC
.--““-- R =
-1pC \\ 3m i Figure 5 ?_2110 ]
\ ' j T___,*
\ | i
X \ +3uC !
- \ : ]
‘f \ | +2
wC

-2.5uC

B{2). Calculate the total force on the +3.00-pC charge in Figure 4.
{(a=1.00m b= 2.00m).
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STUDY GUIDE: Coulomb's Law 8

Solution

Step 1: Choose axes as in Figure §.
Step 2: Sketch in all forces. This gives component signs.

3

total = (F" cos e] i ¥ (F] sin 9] )i - (FZ cos 62)i - (FZ sin Bz)j

= 17y (2% + 22) - £y phZ 5 0% + [ (AT + 2) + £, (14T + 40035

Step 3: Calculate magnitudes from F = q]q2/4ﬂs
-12 .2
. {0.0x10° nchz)(aoxw c:),_“]axmzI

fi* (1 + 22) m
-12
F, - (9.0 x 10° Nmzz_)(_soxw A) . 318 x103 .
(1 +4).

Step 4: Add components to get the resuitant:
E

fotail

2

= (0.97 x 1072 - 0.310 x 1072 M) + (0.475 x 1072 + 0.077 x 1072 )]

= (6.6 x 107° N)i + (5.5 x 1073 n)3.

C(2). Calculate E at point P in Figure 6 due to the -1.00-pC charge (a = 2 m,
(a=2.00m, b= 3.00m).

Solution

Step 1: Choose axes as in Figure 7. The direction of E at P is the direction

in which a positive charge would move if placed at P. The magnitude of E at P is

(1/4neu)[1.00 uC/(distance)zj (which is the ratio of force ?ﬁ on a very smaill

test charge q divided by q: E = Fﬁ/q).

—ly
i
&
ks
Sy

3 .
; te _

Figure 6 q Figure 7 I : %
: :
L'E' -Q L——g

42 - 1pC




STUOY GUIDE: Coulomb's Law 9

Step 2: Sketch % as in Figure 7 and calculate

£ = #(E sin 8)3 - (E cos 8)3.
Step 3: Calculate the magnitude from E = (1/43:0)(q/r2):

E = (9.0 x 10° & m®/¢%)(1075 ¢)7(2% + 3%) o = 0.69 x 10° N/C.
Step 4: Calculate the resuit:

E = -[{0.69 x 10° W/C)2//73)17 + [(0.69 x 10° W/c)(3/13)1]

#{0.38 x 103 H/C)7 - (0.58 x 10° §/C)3.

D{3). A stationary particle whose mass is 0.100 kg and whose charge is +0.300 C
is suspended by a massless string under gravity in the presence of an
electric field of magnitude 1.00 B/C as shown in Figure 8, C(alculate the
angile 9.

E=1N/C
£

%)
~y

[N R S R .

j‘t_) +0.3 C % —> >

= 0.1kg Figure 9

i "‘3 -
Figure 8 Figure 10

Solution

The sum of all forces must be zero for the particie at rest. First, we pick a
coordinate system, taking +x to the right and +y upward, and draw a free-body
diagram as in Figure 9. Then we add up all the forces acting on the particie:

X component y component
electrical (?é = dE):
-{0.300 C){(1.00 N/C){cos 30°) +{0.300 €){1.00 K/C}{cos 60°)
tension:
Tsin @ T cos 9
gravity:
0 ~(0.700 kg){9.8 m/s?)

Since the x and y components add to zero, we get

T sin 8 = (0.300 ¥)}{cos 30°), T cos @ = (0.98H - 0.300 H){cos 60°),
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STUDY GUIDE: Coulorh’s Law 10

. (0.300)(+A72)  _ {0.300)(0.866) _ 0,260 _ am e
tan & = 5-98°-5.300(0.50) - 0.83 = 353 - 0.310, 8=17.0°

£(3). The diagram in Figure 10 shows an electron traveling with velocity
8.0 x 10° m/s in the X direction through a pair of deflecting plates
2.00 cm long. Assuming the electric field between the deflecting plates
to be constant and equal to 9800 H/C in the +y direction, calculate
(a) the time the electron spends between the deflecting plates;
(b; the acceleration of the electron when between the plates;
(c) The electron’s y component of velocity when it emerges from the
plates;
(d) the angle between the electron’s initial velocity and its velocity
upon emerging;
(e) the amount the electron is deflected in the y directien when it
emerges,
(f) Assuming the electron to enter the plates at x = 0, y = 0, find the
equation for y(x). _
The charge on an electron is -1.60 x 10 1® C; the mass of an electron is
9.1 x 107! kg.

Solution

(a) Since there is no acceleration in the x direction, the x component of velocity
is constant at 8.0 x 10° m/s. Since only 0.0200 m needs to be traveled, the time is

t= §Zgoxx139-;}2 = 250 % 107 5, Figure 11 Vx

(b) a, =0, ay = (force)y/m, v,
a, = q;” - (160 3 10 RSB0 W) < 5 7 x 101 mys?.

(c) v, = vg, * at = 0+ (-1.70 x 10 m/s2)(2.50 x 107° s) = -4.3 x 10° n/s.

(d) See Figure 11.
tan 0 = L= 24:3% 10° w/s _ -0.54; = 28.4° below the horizontal.

Y¢ 8.0 x 10% m/s
(e) y = yy * vgyt * (/202 = 0.+ 0 - (3/2)(1.70 x 10"° w/5°)(2.50 x 10%)? 2 0.53 co.

_ 2 _ 6 _ -
(f) x = Xg * Vout * (1/2)axt s Voy = 8.0 x 10 m/s, a, =0, Xq = 0.

- 2 _ - = =
Y=Y¥y* voyt + (]/2)ayt S P Yoy ~ 0, a, gEy/m, X Voxts
a a qE
t = _.’.‘..., y = sa tz = l(.-L)xz = (—L-)xz = (—-z-—)xz, ’
Vox zy 2',2 w2 2my’
Ox 0X 0x
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STUDY GUIDE: Coulomb's Law 11

and
qE ‘ -19
y . _ {-1.60x10" " c}{9800 #/C) __ _-1.60 _ .
) 1128 (917 0t = 13847
zv2, 2(9.1 % 10737 xg)(8.0 x 10° mys)?  (128)(9.1

0x
Thus y = -13.8x% m1,

F(3). Memamnm-91x1rmkgmdq-4sxlfwclﬁmv-1§1W5

enters a region of space with uniform electric field E = 5,05 N/C.

(a) How much time will it take for the electron to be stopped by the
electric field?

b) How far will it have traveled in coming to rest?

c) How much work is done on the electron in bringing it to rest?

d) What was the kinetic energy of the electron at the start of the problem?

Solution
qt _ -19
9.1 x 10 kg
v 6
t=2s 10 /s s=1.12x107°
x 0.88 x 10~ m/s

-—
o
et
>

n

Xg * vt + ax(t /2),

= (10° m/5)(1.12 x 107% 5) + (-0.88 x 1012 w/s2)(1.12 x 10° s)% = 0.57 m.

Fad
]

(c) For constant force _
W= Fd = gEd = {1.60 x 10719 €)(5.0 N/C)(0.57 m) = 4.6 x 10717 4.

w)(mh=m3k=[wjxlf“kmmuw5wn2

= 4.6 x 10712 kg mys? = 4.6 x 10717 4.
Note that the work done eguals the change in KE.

Problems
G(2). Calculate the total force on the -2.00-uC charge in Figure 12 (a = 3.00 m).

H(2). Calculate the electric field at point P in Figure 13 (@ = 1.00 m, b = 3.00 m,
c=2.00 m) Hint: follow the steps in the Solution to Problem A using
E= q/4ne, r? (instead of F).




STUDY GUYIDE: Coulozmb*s Law 12

+2p1C N +1pC @-21C
i 1
? J N T P ia
] 2 H
at % {c
- 2pC
Figure 12 Figure 13

FIXED
N D

POSITION

Figure 14

1(3). A particle of mass m and charge -3.00 uC is suspended at rest by a
massless string as shown in Figure 14, in the presence of gravity; the
fixed charge is +4.0 uC. Find the mass m (2 = 2.00 m, b = 3.00 m).

J(3). An electron (m= 9.1 10-3] kg){q = -1.60 x 10-]9 C) circles a stationary..
proton (g = +1.60 x 1071 C) at a distance of 5.3 x 10']] m. What is the
electron’'s speed? Hint: Recall that particies traveling in a circile
accelerate toward the center (Worked out in the module Planar Motion).
Solve by equating this "centripetal” acceleration times the mass to the
attractive electrical force.

Solutions
6(2). Fyppp = [-7.1 x 10797 + (2.10 x 10)37 W,
H(2). By = [(1.13 x 109)7 + (9.5 x 162)3] /C.

1.70 x 1073 kg.

L1}

1(3). m
J(3). v

L1}

2.20 x 10° m/s.
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LY
Practice Test Answers
-3 6 -3 12 4,2
1, F = [(9.0 x 1073 (- 10—« 11+ (9.0 x 10 J—2 4 151 H
total 34%?“ 20/20 34J" 20720
= [+(1.50 x 107%)7 + (1.50 x 1073)j3 1.
-6 9., 2,2
5. &wn=cm3P“5°”m cxguxw Nmm)m Q= 5.6)2 w4oc - 2.6 C.

(5.6 m)2 35 x 10°

3. In a conductor, charges are free to move in response to an electric field; in
a perfect insulator, charges are not free to move.
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COULOMB'S LAH AND THE ELECTRIC FIELD Date

pass recycle
Mastery Test Form A

i 2 3
Hame _ Tutor

1. Determine the electric field at point P in Figure 1 {(a = 3.90 m, 6 = 4.00 m)}.
Show your work.

2. In Figure 2, a small sphere of mass 1.00 g carries a charge of 20.0 uC and
is attached to a 5.0-om-1ong silk fiber. The other end of the fiber is
attached to a large vertical conducting plate that provides a uniform hori-
zontal field of 10® N/C. Find the angle the fiber mekes with the vertical.

3. uhat is the main difference between a conductor and a perfect insulator?

\
\ — 3 7
= 10° N/C
- %l .
\
'P —
i \
:a B +20uC
b T~
-53uC +10uC
Figure 1 Figure 2
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COULOMB’S LAY ARD THE ELECTRIC FIELD Date

pass recycle
Mastery Test Form B

1 2 3
Hame Tutor

1. Determine the force on the #2.00-uC charge at point P in Figure 1. Show your
work. (Q=4.0%x10°C,2a=0.80m b=0.60m)

2. The object in Figure 2 with mass m = 0.100 kg and charge g = #5.0 x 10'3 C
is fired upward at an angle of 30° with the horizontal with an initial speed
of 400 a/s in a vertically downward electric field of 2.00 x 105 N/C. How
high does it rise?

3. Hhat is the main difference between 2 conductor and a perfect insulator?

Figure®1
j
Poe
! l :
i i
]
+20 -0

49
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COULOKB'S LAY AND THE ELECTRIC FIELD Date

pass recycle
Mastery Test Form €

1 2 3
Hame futor

1. Deztermine the electric field at point P in Figure 1. Show your work.
(0, = 4.0x1070 ¢, 0, = 8.0 x 1070 ¢, gy = 10.0x 1070 ¢.)

2. A proton in Figure 2 {m = 1.67 x 10°%/ kg) is projected horizontally with
velocity Vo © !07 m/s into a 105—ﬂ/C uniform field directed vertically
between the parallel plates 20.0 om long. Hhat is the angle the proton velocity
makes with the horizontal when it emerges from the ofher side? Heglect any
fringing field effects. (Note: tan 6 = vy/vx. For small 6, tan & = 6.}

3. What is the main difference between a conductor and a perfect insulator?

0 Zm{
0.3m
|
l0.4‘1m
}
02
Figure 1 ’ Figure 2
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COULO¥B*S LAW AND THE ELECTRIC FIELD Date
pass recycile
Mastery Test Form D
1 2 3
Hame Tutor

1. A -1.00-uC charge is at the center of a circular arc of radius 8 = 3.00 m
in Figure 1. The +3.00~-pC and -2.00-pC charges are located on the arc, as
shown. Calculate the force on the -1.00-pC charge.

2. An electron {q = -1.60 * 10712 C) experiences a force of (+3.00 x 10'16i) H
in 2 certain region of space.
(a) Find E in this_region.
{b) Assuming that £ is constant, and that the electron’s motion takes it
through the origin and also through the point x = 5.0 m, y = 4.0 m, how
much work is done on the electron by the electric field in passing beiween
these points?

3. What is the main difference between a conductor and a perfect insulator?

Figure 1
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COULOMB'S LAY AND THE ELECTRIC FIELD Date

) pass recycle
Mastery Test Form E
1 2 3
Hame Tutor

-}
1. Find the magnitude and direction of the field E at point A in Figure 1.

2. A charged object, with q = +1.00 x 107% ¢ and m = 0.50 kg, is released at
rest in a uniform electric field with intensity E = 3.00 x 10" #/C, directed
upvard. This is done near the surface of the Earth.

(2) In which direction does it move?
(b} How long does it take to move 4.5 m?

3. What is the main difference between a conductor and a perfect insulator?

1.00 m A
+1pC@——=
-

) /
/

/72.00m
/

]

l
j L/
®_suc
L) i

Figure 1
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COULOMB'S LAW AND THE ELECTRIC FIELD A-1

MASTERY TEST GRADING KEY - Form A

1. What To Look For: Invite the student to recheck his work if you spot a
singie sign error.

Solution:

(9.0 x10°)(107°)(4/5)7 , (9.0 x 10%)(10°°)(3/5)2 _ (9.0 x 10°)(5 x 107%)(as5);
p 25 75 J 25

9 '6 Y ~ Y
- {80 X 10°M5 x 10 M3/5)F = (108725 x 10%)7 + (27/25 x 10%)]
Ef = [-(4.3 x 10%)7 + (1.08 x 109)37 W/C.
2. Solution: ZF, =0 = (2.00 x 107> ¢)(103 N/C) - T sin 6 = 0,
z§=o=7cme-uw3mxmswéL
Thus tan € = 2.05 and 9 = 64°,

3. Solution: In a conductor, charges are free to move in response to an electric
field; in a perfect insulator, charges are not free to move.

93




COULOMB'S LAW AND THE ELECTRIC FIELD 8-1

MASTERY TEST GRADING KEY - Form B

3.

Solution:

- 3,(9.0 x 109)(16.0 X 10-]5)2 4,{9.0 x ]09)(]5,0 % ]0-]5)f
) = (g) ]2 i + {2) 5 i

Fdue to 8.0 iC :
1
= [{0.35/4 x 10°3)7 + (0.46/4 x 10~3)1] M.

- - g -]5 ~ g -]5 ~
Pldue to -4.0 i) = (5_3)(9.0 x 10 )58.0 x 10 )2 _ (%)(-9.0 x 10 )_Lsz.o x 10 ):i

1

= [(0.173/4 x 10'3)¥ - {0.231/4 x 10'3)53 N.
= _ “3,7 <37 _ -4, -4, 7
Frotal = (0-13 x 1077} + (0.06 x 1077)j = [(1.3 x 107")i + (6.0 x 107")3] N.

What To Look For: VOy =V sin 30° = 200 m/s. Student could also use
A A

= = = 2 - =
Vy = Voy = 20.0yy, Yy 0, y voy/( 20.0y)} = 2.00 m.

max
v
to zero is [Egzl.

Solution: The time for a,_ to take v

y ) Oy : y
_ .af 2 (5.0 x 107 €){2.0 x 10° N/C) 2
a 1-3-- 9.8 m/s 0-100 9.8 m/s

= -9.8 m/s2 - 104 m/52 = -104 m/sz,

t=200/s . 6020 s,

107 m/s

=y, +v.t+ la t2 = {200 m/s){0.200 s) - (104 m/s)(0.0200 5)2
Ymax 0 "0y " 2% i . 5

=4,0m-2.00m=2.00 m.

Solution: In a conductor, charges are free to move in response to an -electric
field; in a perfect insulator charges are not free to move.
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COULOMB’S LAY ANO THE ELECTRIC FIELO £-1

MASTERY TEST GRAQING KEY -~ Form C

1. Solution:

_ (9.0 x 109)(4 0 x 107'%)* PENCE R 10 ) (10 )“ (4;(9 .0 x 109)(10'9)“
= (172)2 57 (12 (172)°

) =104 A ~ ~
;9.0 x 10 )(g.o x 10 lj = (~7.21 + 209j) #/C.
(1/5)

2. Solution: Travel time between plates is

£ = x/vg, = 0.200 m/10” m/s = 2.00 x 10°°

a, = gE/m = [(1.60 x 10719 /(1.67 x 1072733 (-10°) = -0.96 x 10%° m/s2,

5
v, = vy *at=-1.90 x 10° m/s, tang = 1-90x 10 /s - 1.90 x 1072
y Yoy T % 10’ n/s

= 1.90 x 1072 rad = 1.10° below the horizontal.

3. Solution: In a conductor charges are free to move in response to an electric
Tield; in a perfect insulator, charges are not free to move.




COULOMB'S LAW AND THE ELECTRIC FIELD D-1

MASTERY TEST GRADING XEY - Form D

1. Solution: Choose axes x and y.

_ (9.0 x 10°¥(3.00 x 1 ~ B (9.0.x 2.00 x 10°'%y%
Fo (9:0 x10%(3.00 x 107192 3 (9.0 x 10°)(2.00 x 107%):
9-0'1112 z 9.0 me

_ (0.0 x10°)(2.00 x 10712
9.0 nf

= [-1073 - (1.30 x 07337 K.

1%
'2—1

2. Solution:
(a) = B/q = (3.00 x 10°18)/(-1.60 x 1071%)7 =-(1.88 x 10%)7 w/c.

(b) For a constant force ¥ = Fd = (3.00 x 10- 18 §3{5.0 m) = 1.50 x 16712 .

3. Solutjon: In a conductor charges are free to move in response to an electric
field; in a perfect insulator, charges are not free to move.




COULOMB'S LAW AND THE ELECTRIC FIELD £-1

MASTERY TEST GRADING XEY - Form E

1. Solution:

. (8.0 % 16°%)(9.0 x 16%)43, (9.0 x 1°)(1075)2
E=-G ) I3 1 '

9 - - -~
- (-0 107)(8.0 < 107 (ByT - _(4.56 x 10%)3 e,

2. Solution:

4 4
() o, = % + g = {10 C)(g:gﬂk; 10" H/C) _ 9.8 m/s? = (6.0 - 9.8) m/s? = -3.8 m/s°.

It moves down.

2
. 1,2 _ 3.8t .8 .
(h) y= YO ¥ VOY ¥ ?yt > 4-5 m= 2 tz 3.8° t= ].54 S.

3. Solution: 1In a conductor, charges are free to move in response to an electric
field; in a perfect insulator, charges are not free to move.
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¥odule 1
STUDY GUIDE

FLUX AND GAUSS' LAW

INTRODUCTION

Charles Augustine de Coulomb (1736-1806) designed his famous experiment to
measure the force relationships between charged bodies: Coulomb’s l1aw is the
resulting empirical statement. Gauss® law (Karl Friedrich Gauss, 1777-1855),
which you will learn in this module, has a2 more obscure origin. It was origin-

-2lly 2 mathematical theorem. Scientists in Gauss’ nineteenth century were much

more inclined than we are today fo equate mathematical correciness with physical
correctness. ¥hen it was realized that Gauss’ (mathematical) theorem could be
applied to the electric-field concepts of Faraday io sroduce Gauss’ (physical)
1aw, this extenmsion was eagerly accepted. The origins of the 1aw, however, con-
tinued and still continue to 1ie in the domain of pure logic; therefore they may
be somewhat inaccessible to you in beginning physics courses. Your texts and
this module will use both physical and mathematical arguments and examples to
help you achieve a masfery of these ideas and their applications.

PREREQUISITES

Before you begin this medule, Location of

you shouid be able to: Prerequisite Content

*lse vectors to represent certéin quantities and add Dimensions and
them (needed for Objectives 1 through 4 of this Vector Addition
module) Yodule

*Perform vector scalar multiplication (needed for Vector ﬁultip]ication
Objectives 1 through 4 of this module) Module

*State Coulomb's l1aw (needed for Objective 3 of this Coulomb’s Law and the
module) Electric Field Vodule

*pescribe an electric field, conductors, and insu- Coulomb’s Law and
1ators (needed for Objectives 1 through 4 of this the Electric Field
module) Fodule

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be ahle to:

1. Statement of Gauss‘_law ~ State Gauss' 1aw and explain all its symbols.

2. Llimitations of Gauss' law - Recognize when Gauss®' law cannot be used to
determine the electric field caused by a static charge distribution, and
explain why.
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STUDY GUIDE: Gauss® Law 2

3. Applications of Gauss' law - Use Gauss" Taw to

{a} determine the electric field due to certain symmetric charge distri-
butions; or

(b} determine the net charge inside volumes where the electric field is
known everywhere on the surface of the volume.

4. Electric field, charge, and conductors - Given a conductor with a static
charge distribution, use the properties of a conductor and/or Gauss' 1aw to

{a}) explain why the electric field is perpendicular to the surface of the
conductor;

(b} explzin why the electric field is zero inside the conductor.

{c} explain why the excess charge is on the surface of the conductor.
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STUDY GUIDE: Gauss® Law 38 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engineers

{McGraw-Hi11, New York, 1975), second edition

SUGGESTED STUDY PRDCEDURE

Read Geperal Comrent 1 in this study guide and Sections 19.1 and 19.2 in Chapter

.19 of your text. Then read General Comment 2, Section 19.3, and work through

Problem A. Read Section 19.4 and work through Illustration 19.1. Read Sections
19.5 and 12.6 and work through Problem D and Illustration 19.2. Then read Sec-
tions 79.7 and 19.8, work through Il1lustrations 19.3 and 19.4 and Problenm C.
Read General Comments 3 and 4 and work through Problem B before working the
Assigned Problems., Try the Practice Test.

BUECHE
Objective Problems with Assigned Additional
Humber Readings Solutions Prob]gms Problems
Study Text Study {Chap. 19)
Guide Guide
1 General Comment 1, A
Secs. 19.1, 19.2,
General Comment 2,
Sec. 19.3
2 General Comment 3 B Quest.? 5, 7, 11, 12
3 Secs. 19.4, 19.6 ¢ IMus.® E,F, Quest. 3, 6, Probs.
to 19.8, General 19.1, G, H, 507, 9,11, 13 to
Comment 4 19.2, | 15, 17, 18
19.3,
19,
4 Sec. 19.5 _ D

11us. = Illustration(s).  Quest. = Question(s).
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STUDY GUIDE: Gauss’ Law 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Kiley, Hew
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read General Comments 1 and 2 in this study gquide and Section 24-1 in Chapter
24 of your text before working through Example 1. Then read Section 24-2, and
work through Problem A. Read Sections 24-3, 24-4, and 24-5, General Comment 3,
and work through Problem B. Then read General Comment 4 and Section 24-6, and
work through Examples 2 through 5. Do the Assigned Problems before attempting
the Practice Test.

HALLIDAY AND RESNICK

Dbjective Problems with Assigned Additionél
Number Readings Solutions Probilems Problems
Study Text Study (Chap. 24)
Guide Guide
1 General Comment 1, A Ex.21 Quest.? 3, 5

Sec. 24-1, General
Comment 2, Sec. 24-2

2 General Comment 3 B fluest. 9, 11

3 Sec. 24-3, General C Ex. 2 £, F, Quest. 12 to 14, Probs.
Corment 4, Sec. 24-6 to 5 G, H, I 8,9, 12 to 35

4 Sec. 24-4 D uest. 7, 8

dx. = Example(s}. Quest = Question(s).




STUDY GUIDE: Gauss' Law 3{SZ 1)

TEXT: Francis Heston Sears and Mark Y. Zemansky, University Physics {(Addison-
Wesley, Reading, Mass., 197D), fourth edition

SUGGESTED STUDY PRDCEDURE

Read General Comments 1 and 2 in this study guide. HNote that we use the symbol
% for flux instead of ¥ as used in your text. Then read Section 25-4 in Chapter
25 of your text and work through Problem A. Read General Comment 3 and work
through Problem B; then read Section 24-5 and General Comment 4. Work through
Problems C and D before trying the Assigned Problems. Try the Practice Test.

SEARS AND ZEMANSKY

objective Problems with Assigned Additional
Number Readings Solutions Prob]ems Problems
Study Text Study
Guide Guide
1 General Comments 1, A
2, Sec. 25-4
2 General Comment 3 B
3 Sec. 25-5, General € Sec. 25-5 E,F, 25-12, 25-13, 25-16,
Comment 4 G, H, I 25-17{except d and e),
25-19, 25-2p, 25-21,
25-22
4 Sec. 25-5, General D
Comment 4
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STUDY GUIDE: Gauss’ Llaw 3(uws 1)

TEAT: Richard T. Heidner and Robert L. Sells, Elementary Classical Physics
{Allyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Read General Comments 1 and 2 in this study quide and Section 2£-1 in Chapter

24 of your text. Study Example 24-1. Then read Section 24-2 to p. 489. Read
Section 24-3 and work through Problem A; read General Comment 3 and work through
Problem 8. Then read General Comment 4. Read the rest of Section 24-2 and al?
of Section 24-4 before working through Examples 24-2, 24-3, and 24-4, and Problem
C. Read Section 24-5 and work through Problem D. The main ideas and equations
in this module are presented in a summary at the end of Chapter 24 (p. 497).

Work the Assigned Problems before trying the Practice Test.

WEIDNER AND SELLS

Objective Problems with Assigned Additional

Number Readings Solutions Problems Problems
Study Text Study
Guide Guide
1 General Comments 1, A Ex.2
2, Secs. 24-2, 24-3 24-1
2 General Comment 3 B
3 General Comment 4, C Ex. 24-2, E,F, 28-6, 24-8(a), 24-9,
Secs. 24-2, 24-4 24-3, 24-4 G, H, 1 24-10, 24-11, 24-14(a),
24-15, 24-16
4 Sec. 24-5 D

%Ex. = Example(s).
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STUDY GUIDE: Gauss® Law 4

GENERAL COMMENTS

1. Electric Flux

You have seen from your reading that you can picture electric 1ines of force origi-
nating from each positive charge, bending around smoothly, and continuing on until
they {possibly) end on some negative charge. You will recall that the direction
of the line of force at any point gives the direction of the electric field T at
that point. We now carry this pictorial representation of the elactric field a
Tittle further, and specify how many 1ines shall be drawn. See Figure 1.

This is arbitrary, but if we make the number of 1ings that originate fromor ter-
minate on a charge directly proportional to the amount of charge, we shall be able

to count the 1ines and determine the charge. In the SI system of units we draw
1/eg 1ines for each coulomb of charge:

$ = ('I-/eo)q. (1)

This quantity ¢ is called the electric flux; and in this context the 1ines of
force are often called lines of flux, or flux lines. #fote that if q is negative,
then ¢ is negative, and the flux 1ines are drawn pointing inward (see Fig. 1).

Figure 1 Figure 2

But now suppose you cannot actually see inside the box - that all you can see- is
the 1ines of flux leaving the box, as in Figure 2. Can you tell something about
the charges contained inside? Yes, indeed, you can count up the total number of
1ines 1eaving the box, to find the total flux:

R NALT @
where Eq. (1) has been used to get the l1ast equality. That §s, the total charge
Q= I, contained within any surface S is related to the net amount ¢ of flux
lines passing outward through the surface by

Q= 30"3’- (3)
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STUDY GUIDE: Gauss' Law 5

Hote that ghe "countina up” of flux 1ines must be done in an algebraic sort of
way, in which you add one for each 1ine coming out, and subtract onse for each
1ine going in.

2. Surface Integral

In Figure 3 is shown a volume enclosed by a surface, much 1ike the volume inside

a distorted balloon. The surface can be divided into area elements dh. You may
have done this in your calculus <lass for regular shapes such as cylinders, spheres,
and triangles. You probably have not treated these area elements as vectors, how-
ever, but just det~rmined their magnitudes, dA. The direction of di is outward

from the volume and perpendicular to the surface.

— Fiqure 4
JdA dA
A
dA .
E
dA ‘z
ey
¥
Figure 3
y
X
Figure 5

How suppose you were told the value of the electric field [ everywhere on the
surface. Each surface area element dA would have its own value of £, as shown
in Figure 4. E - dA is a straightforward scalar multiplication of vectors, and
the product will be an infinitesimal Sscalar quantity;

do = £ - dA.

What if someone now asked you to find the total value of ¢ for the whole surface
of the volume. You would have to add up all the d¢'s associated with every on
the surface. This sum is written as an integral:

t . dk.

¢ = all surface de = all surface

of volume of volume
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STUDY GUIBE: Gauss’ Law 6

This integral is called a surface integral and is represented by ?f . dh or
$E - dS in some texts and by JE - d or JE . dS in others. It is important to
remember that you must integrate over all of a completely closed surface.

Exercise: Here is a problem to check your ability to perform simple surface
integrals: See Figure 5. The electric field in this space is uniform and
equals'E = Eof. Calculate ¢ for the surface shown in the figure. Hint: There
are six sides. Calculate IE - dS for each side and then add {scalarly) these
answers. Do not forget that the scalar product of perpendictilar vectors is
zero, (Answers for the three sides shown are at the bottom of this page.)

3. Limitations
Although Gauss' law is always true it is not always useful. The integral

gt - dR = 4 cos 6 dA = g/¢,

can be solved for E only if E cos 6 can be factored out of the integral. Then
you write Gauss' law as

E cos 6 ¢ dA = g/¢,
and solve for E as

QIs

E= s Bc,bdA cos 8 Ay

You can see that in order to factor out, E must have the same magnitude and the
same direction with respect to every dA vector on the surface of integration.
However, as indicated in the Exercise in General Comment 2, you might be able to
divide this syrface into smaller surfaces some of which have E perpendicular or
paraliel to dA.

4, Use of Gauss‘ Law to Determine E for Symmetric Charge Distributions

When a charge distribution is known and possesses sufficient geometrical symmetry,
one can use Gauss' law to deduce the resulting electric field. The procedure for
doing so is pretty much the same in all cases and is outlined below.

apts
3 = 252.235 (ogp S02 3) = !p . i ﬁu;?ols
‘0=4yp - 3 100441 ‘0=Yp - 3 do;I TSASMSUY
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STUDY GUIDE: Gauss' Law 7

Step 1. Deduce the direction of £ from the symmetry of the charge distribution
and Coulomb’s 1aw, e.g., for a spherically symmetric distribution E must be
radial, i.e., must point away from (or toward) the symmetry center of the
distribution.

Step 2. Use the sym%gtry of the charge distribution to determine the locus
of points for which € must_ be constant in magnitude, e.g., for sphericail
synmetry the magnitude of E is necessarily the same at all points on the
surface of a sphere concentric about the symmetry center.

Step 3. With Steps 1 and 2 as guides determine a closed {sometimes called
Gaussian) surface such that at each point on the surfacg E s either (a)
perpendicular to the surface and of constant magnitude E, or (b) in the plane
of the surface, i.e., with no component normal to the surface.

Let A be the area of that portion of the Gaussian surface for which
E is normal and of constant magnitude E. The electric flux for this part of
the surface is EA, although the flux for the remaining portion of the surface
(if there is any such part) is zero since £ has no normal component. Thus
the surface integral over the Gaussian surface is EA.

Step 5. How set the electric flux of Step 4 ~qual to the net charge g
enclosed by the Gaussian surface multiplied by 1/50, i.e.,

EA = 1/80q or E= q/eOA.

Thus at each point on that part of the surface for which £ is perpendicular
the electric field has a magnitude as determined here.

Example 1

Charge is distributed with a uniform density p (C{mg) throughout a iong
(infinite) cylindrical rod of radius R as in Figure 6. Let r measure the
distance from the symmetry axis of the cylinder to a point. Determine E(r).

Figure 6
Step 1: From the symmetry of the charge distribution, E must be radial,
i.e., perpendicular to the symmetry axis (see Fig. 7).

Step 2: The unarge symmetry ensures that £ will have the same magnitude at
all points a distance r from the axis (see Fig. 7).

Step 3: The Gaussian surface is a cylinder of length L and radius r concentric
with the symetry axis. On the curved surface E is perpendicular (Step 1)
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STUDY GUIDE: Gauss’ Law 8

and constant in magnitude (Step 2}. On the flat ends £ has no normal
component {Step 1}. (See Fig. 7.}

Step 4: The area of the curved part of tg% Gaussian surface is A = 2arL.
1t is on this part that E is paraiiel to and constant in magnitude E.
Therefore the electric flux for the curved part is

¢ = EA = 2arLE.

Since E is perpendicular to dﬁ on the two flat ends of the cylinder, the
flux through these two parts is zers. Therefore 2arLE is the total flux
through the Gaussian surface.

Step 5: See Figure 7. Clearly the charge enclosed by the Gaussian surface
depends upon whether r <R or r > R. For r > R, the surface encloses all
the charge in a length L of the rod, namely,

g=poRL (r> R};

but for r < R, the surface encloses only that charge inside the Gaussian
surface at radius r and length L, nameiy,

G = paRL  {r <R).

ke — L N
TE End view
g - i P R ey R ey A D P R R P S
E E oo &3 f‘ba:
R % e
b
E& =
Side view

J’ LGaussian surface Figqure 7
E

Now using Gauss’ law and equating the electric flux to 1/60 times the net
charge enclosed gives us

25rLE = (1/80)(pﬁr2L) r <R
(Veg)lonkiL) >R,
E = pr/230 r<R

]

pR2/280 r>R.




STUDY GUIDE: Gauss' Law g

A graph of the magnitude of E versus r_ is shown in Figure 8. Remember this
js just the magnitude. At each point E has this magnitude and points radially
outward if p > 0 and radially inward if p < 0.

Figure 8 Figure 9

Gauss' 1aw can be used to determine the electric field resulting from highly
symmetyric charge distributions. To do so, one infers from the charge symmetry
a closed surface on which the electric field is either constant in magnitude
and perpendicular to the surface, or in the plane of the surface. The electric
flux is then easily determined in terms of the magnitude of the field and

kpown gecmetrical quantities. Equating this flux to 1/e, times the known
enclosed charge permits a determination of the magnitude of £ at all points.

PROBLEM SET WITH SOLUTIONS

A{1). State Gauss' law and explain all 1ts symbols.

Solution
Depending on your text's notations, Gauss' law is

& - dh = a/ey or fE - dR = g/g,

or §E - @S = qfeo or ff - dS = qfeo.

Given some volume V enc]g;ed surface A {or S), containing some net charge q,
the surface integral of £ - dA (or E - d§] done over the whole surface equals the
enclosed charge divided by gg. E is the electric field on the surface enclosing
the volume; £ is the permitgivity of free space.

8(2). The three equal charges shown in Figure 9 are fixed at the points qf an
equilateral triangle. Explain why Gauss’ law is not used to find £ at any
nearby point.

Solution

it j; impossible to easily draw 8 Gaussian surface such that E cos 6 is constant
on it.
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5

(ol

q

Figure 19

C(3). The point charge e in Figure 10 is surrounded by two charged, spherical,
thin metal shells as showr. Point P is inside the inner shell a distance
2.00 m from the origin. Poiat Q is between the shells a distance 3.00 m
from the origin. oint R is outside the shells a distance 4.0 m from
the origin.

6

gy = 3.00 x 1075 ¢,
Q, = ~1.00 x 1078 ¢,
05 = -2.00 x 10°° c.

Use Gauss’ law to find € at P, Q, and R. Show your Gaussian surfaces.

Solution

Point P: A spherical shell of radius 2.00 m will be a good Gaussian surface.
Point P is located on this surface, it is the locus of points with constant E,
and £ is parallel to dA everywhere on this surface.  is outward since a is
positive. From
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£ -dh= q/gg, gt - dh = ESdA = EAma’,
Thus,

g -6
1 3.00 x 10°° ¢ = 6.7 % 10° H/C.

E = =
anega’  4a(8.9 x 10712 /i n%)(2.00 m)?

Point Q: Since the charged shell will not alter the spherical symmetry of this
problem, another spherical shell of radius 3.60 m is picked for the Gaussian
surface. MNow the total charge inside this surface is (3.00 - 1.00) x 1076 C
=2.00 x 10°% . As before, .

g, ¥+ Q -6
pah’? 22 } _2.00_3'«210 c i = 2.0 103 e,
Gach  4a(8.9 x 10 73 m2)(3.00 m) -

The direction of E is again radially outward since the net charge in the Gaussian
surface is positive.

Point R: How the net charge inside a spherical Gaussian surface of radius 4.0 m
is zero. canngt be perpendicular to dA; this would violate the spherical
symmetry. Thus £ = 0.

D(4). {a) Do you need t0 use Gauss' law to show that E is perpendicular to the
surface of a conductor with a static charge distribution?
(b) Do. you need to use Gauss' law to show that € is zero inside a conductor
with a static charge distribution?
(c) Do you need to use Gauss'® law to show that the eXcess charge is on
the surface of a conductor with static charge distribution?

Solution

{a) No. I E were not perperdicular to the surface it would have a component
along the surface, and this would cause charge to flow. This would violate our
assumotion of a static charge distribution.

{b) No. If E were not zero inside the conductor, charge would flow, adain
gig?ating the assumption of static charge distribution.

c) Yes:

§f -d= 4/€g»

and since E is zero inside the conductor [compare with part {b)], then for a
Gaussian surface inside the conductor

¢ - dS =0,

and g must be zéfb inside the conductor. The excess charge must be on the surface.
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Figure 11

Problems

E(3).

F(3).

G(3).

Two 1ong Statically charged thin coaxial cylinders are shown in Figure 11.
The charge densities (in units of coulombs per SQuare meter) have the
relationship aé/ob = -b/a. Use Gauss' law to find E:

(a) Between the cylinders. Show your choice of Gaussian surface.
(b} Outside the larger cylinder. Show your choice of Gaussian surface.

Figure 12

A large statically charged flat conducting plate is shown in Figure 12.
The charge density is ¢ (in units of coulombs per square meter).

(a) Why is the charge density specified in units of ¢/m? instead of C/m3?
(b) Use Gauss' law to find E outside the plate. Show your choice of
Gaussian surface.

A long cylindrical uniformly charged jnsulator is shown in Figure 13. 1Its
charge density is p (which has units of coulombs per cubic meter). A long,
thin uniformly charged wire is coaxial to the cylinder as shown. Its
charge density is A (which has units of coulombs per meter). Use Gauss'
law to find:
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(2) £ in the region r < a. Show your choice of Gaussian surface.
(b) £ in the region a2 < r < b. Show your choice of Gaussian surface.
(c) £ in the region r > a. Show you choice of Gaussian surface.

Figure 13

H(3). The infinite slab of insulating material in Figure 14 carries 2 uniform
charge density p. There are no other charges in this region of space, SO
that the field must be symmetric about the plane y = 0, that is, E(y = 0) = 0.
Use Gauss' l1aw o find E(y) for -2 < y < a. Be sure to indicate clearly
the (closed) Gaussian surface you are using. Which way does E point if
£<0?

1(3). A uniformly charged nonconducting sphere has a charge density of
3.00 x 10°12 ¢/m> and a radius of 1.00 m. Use Gauss® law to find £
(a) 0.50 m from the center of the sphere. -Show your choice of Gaussian

surface; and
(b) 2.00 m from the center of the sphere. Show your choice of Gaussian
surface.

Figure 14
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~
~
1
?
1
i - -
Gaussian ) e Gaussian
N\ ] surface of
Surface of " s
length L N—n engt
Figure 15 Figure 16

Solutions

E{3). {a) The charge inside the Gaussian surface of length L in Figure 15 is
q = 2malo,,

and the surface integral is

§t - dh=fE - dh + [E - dh = o(F L dA) + E2mrL.
ends cugged
5ide

Thus,
£ = 2nalo,/ey2nrt = aaé/eor; radially outward.

{b) In the Gaussian surface of lgngth L in Figure 16
q = 2rac,L + 2sbopl = 2nL(a05_+ boB) = 2aL(0).

B
Thus, E=0.

F(3). (a) Inside a statically charged conductor F is. zero, and the excess charge
resides on the surfaces {see Objective 4). In this case there are two equally

charged surfaces. ,
{b) See Figure 17 for two choices for the Gaussian surface. In Figure 17{(a)., the

charge inside the Gaussian surface is q = oA. The surface integral is

g€ -dA=fE-dh+fE-dh+[E-dh=0(f=0) +0f Ldh)+EA-=EA.
top sides bottom
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Thus, E = o/c,, perpendicular to the surface. In Figure 17{b}, the charge inside
the Gaussian surface is a = 26A. The surface integral is

€ -dh=fF-k+ff-dk+[f-dk=pa+0f Ldh) + EA = 2 EA.
top sides bottom

Thus, E = o/e,, perpendicular to the surface.

Figure 17

Gaussian

surface of
{b) length L
S
T Figure 18
d I
] !
H 1
i
by

This shows that Gauss' law really works 1f applied correctly. HNote that this
result can be applied to any shaped surface if the point where you want to find
the electric field is very close to the surface. If you are very close to a
surface, it 1ooks flat.

G(3}. (a) See Figure 18, using
€ - dk = 9/g
we find that the charge inside the Gaussian surface is q = AL, and

fe-dhefE-dh+fE-dh=0(F L)+ p2url.

ends curved
side
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Thus
E= AL/eOZnTL = k/2neor, radialiy outward.

Gaussian
surface
of length L

-~
,/ﬁ\ Gaussian Surfaceb
of length L

Figure 19 Figure 20
(b) See Figure 19, a Gaussian surface of length L. How

g=oV+A=plad - mo)L + AL and ¢F - d = 2meLE.
Thus,

- [on(r® - &) + AlL _ on(r? - a%) + A
2megrl Znegr

E radially outward.

(c) See Figure 20, a Gaussian surface of length L, where

o(m? - ma®)L + AL and 4 - df = E2orl.

q
Thus,

- pﬁ(bz - a2) + A
ZﬂEOr ?
H(3). E(y) = py/EO’ toward the center of the slab.

radially outward.

1(3). (a) 187 x 10'3 N/C, radially outward. (b) 9§ x 10'3 N/C, radially outward.
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PRACTICE TEST

1. State Gauss’ law and briefly explain all its symbols.

2. Gauss’ law is always true but not always useful. Explain why sometimes Gauss'
law is a useful tool to determine the electric field caused by a static charge
distribution.

3. Use Gauss' law to answer these questions:
{a) If a Gaussian surface encloses zero net charge, does Gauss' law require
that £ = 0 at all points on the surface?
(b) IFE=0 everywhere on a Gaussian surface, is the net charge inside
necessarily zero?

4. The top and bottom of the cylindrical can in Figure 271 each have an area
of 0.200 mz. In this reaion of space there is a layer of charge, some of
which is inside the can, so that EB is larger than ET; but the field points
up everywhere. If EB = 5,0 % 104 N/C and ET = 2.50 x 104 N/C, how much charge

is contained in the can?

Figure 21

Charge laver T i

5. You are shown a conductor with a static charge distribution. Use the
properties of a conductor and/or Gauss' law to:
{a) Explain why % is paraliel or antiparaliel to dA at_the surface of the
conductor.
(b} Explain why the excess charge lies on. the surface of the conductor.

©JUBWR [ BaJE 1RY] }@ p[aij diJlda[a Iyl jJo 3n|BA 3y} Si g pue ‘suwnrjoA 3yl DuiaaA0d
3de4uns 3yl Jo Juawd|d paue ue Sy yp b abaeyd e suieludd sz aunbij ui auwn[oA du}

Oasb = sp- 3 o oalb = SP .‘gﬁ J0 oafb =yp - gf 40 03/b =4 - §ﬁ L
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They are multiplied (scalar product) to determine the component of E in the
difgction of dA times dA. The integration must be performed over the complete
surface covering the volume. €, js a constant called the permittivity of free space.

2. Gauss' law is useful when E cos 8 can be factored out of the integrai

¢€ cos 2 dA = a/e,.
This can be accomplished when E cos © is a constant over the surface of integration.
3. (a) M. #f - dk = 0 can be true without E = 8. (b) Yes.

£ - df = a/gg

and if E = 0 on the surface of integration then the left-hand side of the equation
must be zero. Thus the right-hand side must aiso be zero and q = 0.

4. See riqure 23, where the dotted lines indicate the Gaussian surface.

JE-dh=JE -dh+jE-dh+ [E, -dh = EA+0+ (-EA) = (E, - E,)A = a/e,,
top’ curved  bottol T B T B 0
side

q = £5lE; -—EB)A = (8.9 x 10712 c2m s?)(2.50 x 10% 1/C)(0.200 %) = ~4.4 x 1075 C.

Figure 22 T

Er
S
4
dA
E
i, ~i
Fiqure 23 %o S Fiqure 24

T e e s

5. (a) See Figure 24. If E were not in the direction of df it could be

resolved into_ vectors parallel and perpendicular to dR. From F = qE, the
component of E along the surface would produce a force on the charges in the
conductor. They would flow and our assumption about a static charge distribution
would be faise. Thus E must be in the direction of df.

(b} In the interior of a conductor E must be zero. Otherwise there would be
charges moving, in contradiction to the assumption of a static charge distribution.
Applying Gauss' law to a surface just inside the surface of the conductor shows

us that q is zero inside this surface. The excess charge must therefore reside
outside the Gaussian surface on the surface of the conductor.
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FLUX AND GAUSS' LAW Date _

pass recycile

Mastery Test Form A

Name . ) Tutor

1 2 3 4

Use 1/4re, = 9.0 x 10° N n2/c% in working these problems.

1.
2.

State Gauss' law and explain all its symbols.

For the following charged conductors EITHER

Sketch the conductor and the Gaussian surface you would choose to find the
electric field outside the conductor, OR

Explain why Gauss' law cannot -easily be used to find E outside the conductor.

(a) a charged sphere,

(b) a very long charged cylinder,
(c) a very long charged wire,

(d) two nearby point charges,

(e) a 1arge, flat, charged surface,
(f) a charged cube.

What is the net charge on a statically charged conducting sphere of 2.00 m
radius if E is 15.0 x 109 N/C in the radial direction toward the center of

the sphere at a distance 3.00 m from the center of the sphere. Use Gauss' law.

Given a conductor with a static charge distribution:

(a) Use the properties of a conductor and Gauss' law to_explain why E is
discontinuous across the surface of the conductor (why E changes abruptly
from just inside to just outside the surface of the q%ndUctor).

(b) Use the properties of a conductor to explain why E is perpendicular to
the surface of the conductor.
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FLUX AND GAUSS' LAM Date

pass recycle

Mastery Test Form B

Name _ Tutor

1 2 3 4

Use 1/4neo = 9.0 % 109 N m2/C2 in working these problems.

1.
2.

State Gauss' law and explain all its symbois.

Explain why Gauss’ law is ‘not always a -useful tool with which to determine
the electric field.

The long uniformly charged circular rod in Figure 1 with a radius of 2.00 m
has @ constant charge density of

o= (1/7) x 10712 ¢/a°,

{a) Use Gauss® 1aw to find E at a radius of 1.00 m from the axis of the rod.
Show your choice of a Gaussian surface.
{b) Use Gauss’ law to find E at a radius of 3.00 m from the axis of the rod.

Show your choice of a Gaussian surface.

Figure 1

Given a conductor with a static charge distribution, use the properties of a
conductor and/or_Gauss’ law to:

Ea) Explain why %:is perpendicular to the surface of the conductor.

b) Explain why E is zero inside the conductor.

{c) Explain why the excess -charge is on the surface of the conductor.
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FLUX AND GAUSS' LAW Pate

Mast

Hame

Use
1.
2.

pass recycile

ery Test Form C
1 2 3 4

Tutor

1/4u€0_= 9.0 % 109 N mzjcz in working these probiems.
State Gauss® law and explain all its symbois.

For the following charged conductors EITHER

Sketch the conductor and the Gaussian surface you would choose to find 3
outside the conductor, OR

Explain why Gauss' iaw cannot easily be used to find £ outside the conductor.

{a) a charged disk,

(b} a charged sphere,

ic a long, hollew cylinder,

d) three equal charges at the points of an equilateral triangle,
(e) a large, thick, flat plate.

A large flat conducting plate is 0.50 m thick. It is Staticaily charged,
and the surface charge density ¢ is 2.50 x 10'15 C/mz. Use Gauss' law to
find £ 1.50 m from the upper surface of the plate.

Given a conductor with a static charge distribution:

(a) Use the propertiés of a conductor and Gauss® law to_explain why'f is
discontinuous across the surface of the conductor (why E changes abruptily
from just inside to just outside the surface ¢f the ¢ nductor?

{b) Use the properties. of a conductor to explain why E is perpendicular to
the surface of the conductor.
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FLUX ANO GAUSS® LAW A-1

MASTERY TEST GRADING KEY - Form A

1. Hhat To Look For: g causes £. Integration is over a closed syrface.
q is inside the surface of integration. 1It's OK to write out E - dA as
E cos 6 dA, but now 6 must be explained.

Solution:
¢§ -_dK = q/eo or ]E . df = q/eo or ¢€ . dS = q/so or ff «d8 = q/€en.

Given some volume V enclosed by surface A (%r S), and which contains some
net charge g, the surface integral of E dS) over the whole
surface equals th% enclosed charge d1v1ded by eo E'1s the electric field
at area element dA, and €g is the permittivity of free space.

Figure 28
Figure 27

2. What To Look For: (a} See Figure 27, where the dotted 1ines indicate the
Gaussian surface.
Sb) See Figure 28, where the dotted 1ines indicate the Gaussian surface.
{c) See Figure 29, where the dotted 1ines indicate the Gaussian surface.
gd) Cannot easily draw a Gaussian surface over which E cos 8 is constant.

e) See Figure 30, where the dotted lines indicate the Gaussian surface.
f) Cannot easily draw a Gaussian surface over which £ cos & is constant.
The corners give trouble.

==~
/"1
/

)
J

“'--—-/

Gaus sian
Surface

Figure 31

Figure 30
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FLUX ARD GAUSS' LAY A-2

3.

What To Look For: Correct Gaussian surface charge is negative.

Solution: See Figure 31, where the dotted 1ines indicate the Gaussian surface

of radius 3.00-m. The_ spherical symmetry of the charge distribution causes
spherical symmetry in ©.

q/eo =F - dh=-EA = ‘E&vrz,

2 _ (15.0 x 10° 1/€)(9.0 5%)

9.0 x 10° 1 a2/c?

E4ar = 15.0 C.

£
n

-80

Solution: {a} Inside the conductor E = 0. The static_charge distribution

of the movable charges_indicates that ¥ and therefore E is zéro inside.

Outside the conductor £ # 0. Gauss' lay says that if q is not zero then E

is not zero. Thus E changes from 0 to € as you go from inside to outside a
conductor with static charge distribution. :

(b} If E were not perpendicular to the surface there would be an electric
field along the surface. This would contradict the static charge assumption.
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FLUX AND GAUSS' LAHW 8-1

| MASTERY TEST GRADING KEY - Form B

1. ¥hat To Look For: g causes [ Integration is over a closed surface. q
is inside the surface of <integration. It's okay to write out E - df as
E cos @ dA, but now O must be explainad.

Solution:
gE - dﬁ=q/eo orﬁ- tﬁ=q/eo orfﬁ- d§=q/eo orﬁ . d§=q/eo.

Given some volume V enclosed by surface A {or S}, and which contains -some net
charge q, the surface integral of £ - d& (or £ - dS) done over the whole
surface equals th% enclosed charge divided by ¢,. E is the electric field

at area element dA, and g is the permittivity of free space.

2. Solution: It is not always possible to draw a Gaussian surface everywhere
on which £ cos & is the same, and also of which you know the area.

3. ¥hat To Look For: (a) Correct Gaussian surface. Correct charge inside
Gaussian surface. Direction of E.

Solution: (a) See Figure 32, where the doited 1ines indicate the Gaussian
surface. The charge inside the Gaussian surface is q = par?s. The surface
integral is

E-dh+fE-db+ [E- .
On the ends g-‘-dﬁ:

0+ E2ark + 0.

Thus

£ = pr/2e, - (/% x 10712 c/m3_m.oozm)(4n)(9.o « 107 N n2/c2)

= 1.80 x 1072 N/C,  radially outwards.

Gaussian
‘f/—_" S_ur[a(:o
SN el e -
f \\ !
E I} ‘“‘r —— o — - # L] ra )
1 2 L W S -
£




FLUX AND GAUSS' LAW B-2

{b) See Figure 33, where the dotied lines indicate the Gaussian surface.
How the charge inside the Gaussian surface is q = p7a?f. The surface integral
is treated as before to give

Az 3 2 9, 2
pa2/2£or‘= (1/5 x 10 Qﬂﬁ){gzgo&m;)(4ﬂli9-0 x 10° K n°/C)

m
]

2.4 x 10°% §/C, radially outward.

L

Solution: (a) If £ were not perpendicular to the surface, there would be

some electric field along the surface of the conductor, and charges would Tiow.
This would contradict the static charge assumption.

(b) If E were not zero inside the conductor, charges would flow. This
contradicts the stztic charge assumption.

{c) Use the results of (b} in Gauss' Taw. Draw a Gaussian surface just inside
the surface of the conductor. The charge inside this surface is zero.
Therefore the charge must be on the surface of the conductor.




FLUX AHD GAUSS' LAW c-1

MASTERY TEST GRADING XEY - Form C

1. Yhat To Look For: 4 causes £. Integration is over a closed surface, g is

insicde the surface of integration. It's OK to write out E - dA as E cos 9 dA,
but now 8 must be explained.

-

Solution:
jf - df = q/e or ]f . dk = q/e or ¢§‘- &S = q/e or ff'- & = q/so.

Given some volume V enclosed by surface A {or S), nd which contains some net
charge g, the surface integral of E - dA {or E - dS) done over the whole
surface equals the enclosed charge divided by €g- is the electric field

at area element di, and €y is the perm1tt1v1.y of free space.

Solution: (a) Cannot easily draw a Gaussian surface over which E cos & is
constant. Corners give trouble.

b) See Figure 34, wherein the dotted lines indicate the Gaussian surface.
¢) See Figure 35, wherein the dotted 1ines indicate the Gaussian surface.
{d) Cannot easily draw a Gzussian surface over which E cos & is constant.
(e) Sea Figure 36, wherein the dotted 1ines indicate the Gaussian surface.

Fiaure 35 P mer .
L = s \‘ - N {:. ,
{.ﬂ? i | 2 * !“-_,"i
- F ! i : ; W
Figure 34 < 7 - i i ——

3.

( “~ /-

2T s A e ad

7 \s\ :
1A% @ e !
{ - —

] f-;’._— . ’

- .
‘a—d!‘"

rFigure 36

1 1 -
g s | Figurz 37
~ r) s

o

Solution: Sesz F'gure 37, where the dotted lines indicate the Gaussian surface.
The charge inside the Gaussian surface is g = 2#A. The surface integral is

"'E‘-dh”=[ésdh‘+ﬁz’-dh‘+ﬂ5‘-dﬁ=£ﬁ+o+zo=
Thus E = ajeo which does not depend on the distance from the plate.
E -+ (2.50 x 1071% ¢/n)(4%)(9.0 x 107 N nZ/¢?) = 28.3 x 1072 WC

outward perpendicular to the plate's surface.

‘Solution: {a} Inside the conductor € = 0. The static charge distribution

of the movable charges indicaté that F and therefore E is zero inside. Outside
the conductor E # Gau%s law says that if q is not zero then E is not zero.
Thus E changes from 0 to E as you go from inside to outside a conductor with
static charge distribution. If E were not perpendicular to the surface there
would be an electric field and moving charge along the surface. This would
contradict the static charge assumption. aa




